login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A321085
O.g.f. A(x) satisfies: [x^n] exp(-n*A(x)) / (1 - n*x - n*x^2) = 0, for n > 0.
2
1, 2, 6, 36, 330, 4092, 63308, 1165952, 24802704, 596862420, 16003332092, 472588688880, 15231153085304, 531801227022912, 19992702649780800, 805099660439308672, 34574148236596003008, 1577229602738525889984, 76172611622917782581040, 3882814240467405224924960, 208333046141920439476582608, 11737307286279509352537747760
OFFSET
1,2
COMMENTS
It is remarkable that this sequence should consist entirely of integers.
Compare to: [x^n] exp(n*G(x)) * (1 - n*x - n*x^2) = 0, for n > 0, when G(x) = x + x^2 + x*G(x)*G'(x), where G(x)/x is the o.g.f. of A321086.
EXAMPLE
O.g.f.: A(x) = x + 2*x^2 + 6*x^3 + 36*x^4 + 330*x^5 + 4092*x^6 + 63308*x^7 + 1165952*x^8 + 24802704*x^9 + 596862420*x^10 + ...
ILLUSTRATION OF DEFINITION.
The table of coefficients of x^k/k! in exp(-n*A(x)) / (1 - n*x - n*x^2) begins:
n=1: [1, 0, -1, -28, -819, -39056, -2923925, -317422764, ...];
n=2: [1, 0, 0, -32, -1392, -75552, -5832320, -635767680, ...];
n=3: [1, 0, 3, 0, -1323, -100008, -8542665, -955410984, ...];
n=4: [1, 0, 8, 80, 0, -89024, -10215680, -1248268032, ...];
n=5: [1, 0, 15, 220, 3405, 0, -8752325, -1409888100, ...];
n=6: [1, 0, 24, 432, 9936, 234144, 0, -1176833664, ...];
n=7: [1, 0, 35, 728, 20853, 710248, 23232055, 0, ...];
n=8: [1, 0, 48, 1120, 37632, 1560192, 72348160, 3135469056, 0, ...]; ...
in which the coefficient of x^n in row n forms a diagonal of zeros.
RELATED SERIES.
exp(A(x)) = 1 + x + 5*x^2/2! + 49*x^3/3! + 1081*x^4/4! + 46001*x^5/5! + 3272701*x^6/6! + 345526945*x^7/7! + 50126588849*x^8/8! + ...
exp(-A(x)) = 1 - x - 3*x^2/2! - 25*x^3/3! - 695*x^4/4! - 34401*x^5/5! - 2665019*x^6/6! - 295314937*x^7/7! - 44140455855*x^8/8! + ...
PROG
(PARI) {a(n) = my(A=[1]); for(i=1, n, A=concat(A, 0); m=#A; A[m] = Vec( exp(-m*x*Ser(A))/(1-m*x-m*x^2 +x^2*O(x^m)))[m+1]/m ); A[n]}
for(n=1, 30, print1(a(n), ", "))
CROSSREFS
Sequence in context: A061302 A055541 A275551 * A376517 A133822 A133892
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Oct 27 2018
STATUS
approved