login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A133892
E.g.f. satisfies: A(x) = x*(tan(sinh(A(x)))+1).
2
0, 1, 2, 6, 36, 360, 4542, 68544, 1226792, 25441920, 598142170, 15713984000, 456391238028, 14521095333888, 502259604707798, 18763725111828480, 752970270575818192, 32301914469949407232, 1475208429063535282482, 71458043399471257288704, 3659301012147404374818420
OFFSET
0,3
LINKS
FORMULA
a(n) ~ n^(n-1) * sqrt(s/((2*r^2-2*r*s+s^2)*(2*(s-r)*(cosh(s))^2 + r*sinh(s)))) / (exp(n) * r^(n-1)), where r = 0.3611557635751972926... and s = 0.7471844338670576493... are roots of the system of equations r*cosh(s) = (cos(sinh(s)))^2, s = r + r*tan(sinh(s)). - Vaclav Kotesovec, Jul 16 2014
MAPLE
A:= proc(n) option remember; if n=0 then 0 else convert (series (x* (tan (sinh(A(n-1)))+1), x=0, n+1), polynom) fi end: a:= n-> coeff (A(n), x, n)*n!: seq (a(n), n=0..25);
# second Maple program:
a:= n-> n!*coeff(series(RootOf(A=x*(tan(sinh(A))+1), A), x, n+1), x, n):
seq(a(n), n=0..25); # Alois P. Heinz, Mar 05 2013
MATHEMATICA
CoefficientList[InverseSeries[Series[x/(1 + Tan[Sinh[x]]), {x, 0, 20}], x], x] * Range[0, 20]! (* Vaclav Kotesovec, Jul 16 2014 *)
CROSSREFS
Cf. A133822.
Sequence in context: A321085 A376517 A133822 * A196870 A089709 A262234
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Aug 27 2008
STATUS
approved