OFFSET
0,1
COMMENTS
Also numbers m such that floor(1+(m/3)) mod 3 = 0.
Partial sums of the sequence 6,1,1,7,1,1,7,1,1,7, ... which has period 3.
FORMULA
a(n)=3n+6-2*(n mod 3).
G.f.: g(x)=6/(1-x)+x(1+x+7x^2)/((1-x^3)(1-x)) = (6+x+x^2+x^3)/((1-x^3)(1-x)).
G.f.: g(x)=(6-5x-x^4)/((1-x^3)(1-x)^2).
MATHEMATICA
Select[Range[200], Mod[Binomial[#+3, #], 3]==0&] (* Harvey P. Dale, Aug 27 2023 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Hieronymus Fischer, Oct 20 2007
STATUS
approved