OFFSET
1,3
COMMENTS
Let d(m)...d(2)d(1)d(0) be the base-n representation of n+p. The relation a(n)=d(1) holds, if n is a prime index. For this reason there are infinitely many terms which are equal to 1.
Appears to satisfy the recurrence: a(n) = -2*a(n-1) - a(n-2) + 2*a(n-3) + 4*a(n-4) + 2*a(n-5) - a(n-6) - 2*a(n-7) - a(n-8) for n > 14. - Chai Wah Wu, May 25 2016
LINKS
G. C. Greubel, Table of n, a(n) for n = 1..1000
Index entries for linear recurrences with constant coefficients, signature (-2,-1,2,4,2,-1,-2,-1).
FORMULA
a(n) = binomial(n+3,3) mod n.
a(n)=1 if n is a prime > 3, since binomial(n+3,n)==(1+floor(3/n))(mod n), provided n is a prime.
From Chai Wah Wu, May 26 2016: (Start)
a(n) = (n^3 + 5*n + 6)/6 mod n.
For n > 6:
if n mod 6 == 0, then a(n) = 5*n/6 + 1.
if n mod 6 is in {1, 5}, then a(n) = 1.
if n mod 6 is in {2, 4}, then a(n) = n/2 + 1.
if n mod 6 == 3, then a(n) = n/3 + 1.
(End)
MATHEMATICA
Table[Mod[Binomial[n+3, n], n], {n, 90}] (* Harvey P. Dale, Nov 22 2011 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Hieronymus Fischer, Sep 30 2007
STATUS
approved