login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A376517
E.g.f. satisfies A(x) = exp(x^2 * (1 + x) * A(x)).
1
1, 0, 2, 6, 36, 360, 3000, 40320, 532560, 8527680, 152591040, 2987107200, 65408333760, 1544664401280, 39767121313920, 1100734899264000, 32661264290054400, 1034874195222067200, 34834463447361177600, 1242657968679512985600, 46804841790705090892800
OFFSET
0,3
LINKS
Eric Weisstein's World of Mathematics, Lambert W-Function.
FORMULA
E.g.f.: exp( -LambertW(-x^2 * (1+x)) ).
a(n) = n! * Sum_{k=0..floor(n/2)} (k+1)^(k-1) * binomial(k,n-2*k)/k!.
a(n) ~ sqrt((2 + 3*r)/(1 + r)) * n^(n-1) / (exp(n-1) * r^n), where r = (-1 + 2*cosh(log(-1 + (3*(9 + sqrt(81 - 12*exp(1))))/(2*exp(1)))/3))/3. - Vaclav Kotesovec, Sep 26 2024
PROG
(PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(-lambertw(-x^2*(1+x)))))
(PARI) a(n) = n!*sum(k=0, n\2, (k+1)^(k-1)*binomial(k, n-2*k)/k!);
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Seiichi Manyama, Sep 26 2024
STATUS
approved