The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A196870 a(n+1) = A001610(n)*a(n). 1
 1, 2, 6, 36, 360, 6120, 171360, 7882560, 591192000, 72125424000, 14280833952000, 4584147698592000, 2383756803267840000, 2007123228351521280000, 2735708960243123504640000, 6034973966296330451235840000, 21544857059677899710911948800000 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Determinant of the n X n matrix with consecutive Lucas numbers along the main diagonal, and 1's everywhere else. Log(a(n))/n^2 approaches a constant (approximately 0.24) as n approaches infinity. This limit is equal to log(phi)/2 = 0.24060591252980172374887945671218421156759..., where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Apr 10 2016 LINKS FORMULA prod(F(k)+F(k+2)-1, k=1..n-1), where F(k) is the k-th Fibonacci number. a(n) ~ c * phi^(n*(n+1)/2), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio and c = 0.22805409619361969822736866017363184926893729185052240813641180656087... . - Vaclav Kotesovec, Apr 10 2016 MATHEMATICA Table[Det[Array[1+(LucasL[#1]-1)*KroneckerDelta[#1, #2]&, {n, n}]], {n, 30}] (* or *) Table[Product[Fibonacci[k]+Fibonacci[k+2]-1, {k, 1, n-1}], {n, 30}] (* or *) RecurrenceTable[{a[n+1]==(Fibonacci[n]+Fibonacci[n+2]-1) a[n], a[1] == 1}, a, {n, 30}] CROSSREFS Cf. A001610, A003266, A000032. Sequence in context: A321085 A133822 A133892 * A089709 A262234 A055512 Adjacent sequences:  A196867 A196868 A196869 * A196871 A196872 A196873 KEYWORD nonn,easy AUTHOR John M. Campbell, Oct 06 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 31 22:39 EDT 2021. Contains 346377 sequences. (Running on oeis4.)