The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A003266 Product of first n nonzero Fibonacci numbers F(1), ..., F(n).
(Formerly M1692)
81
1, 1, 1, 2, 6, 30, 240, 3120, 65520, 2227680, 122522400, 10904493600, 1570247078400, 365867569267200, 137932073613734400, 84138564904377984000, 83044763560621070208000, 132622487406311849122176000, 342696507457909818131702784000 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,4
COMMENTS
Equals right border of unsigned triangle A158472. - Gary W. Adamson, Mar 20 2009
Three closely related sequences are A194157 (product of first n nonzero F(2*n)), A194158 (product of first n nonzero F(2*n-1)) and A123029 (a(2*n) = A194157(n) and a(2*n-1) = A194158(n)). - Johannes W. Meijer, Aug 21 2011
REFERENCES
R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics, second edition, Addison Wesley, p 597
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..99 (terms n = 1..50 from T. D. Noe)
Alfred Brousseau, Fibonacci and Related Number Theoretic Tables, Fibonacci Association, San Jose, CA, 1972, p. 74.
Spencer J. Franks, Pamela E. Harris, Kimberly Harry, Jan Kretschmann, and Megan Vance, Counting Parking Sequences and Parking Assortments Through Permutations, arXiv:2301.10830 [math.CO], 2023.
Yuri V. Matiyasevich and Richard K. Guy, A new formula for pi, Amer. Math. Monthly 93 (1986), no. 8, 631-635. Math. Rev. 2000i:11199.
Thotsaporn Aek Thanatipanonda and Yi Zhang, Sequences: Polynomial, C-finite, Holonomic, ..., arXiv:2004.01370 [math.CO], 2020.
Eric Weisstein's World of Mathematics, Fibonorial
FORMULA
a(n) is asymptotic to C*phi^(n*(n+1)/2)/sqrt(5)^n where phi = (1 + sqrt(5))/2 is the golden ratio and the decimal expansion of C is given in A062073. - Benoit Cloitre, Jan 11 2003
a(n+3) = a(n+1)*a(n+2)/a(n) + a(n+2)^2/a(n+1). - Robert Israel, May 19 2014
a(0) = 1 by convention since empty products equal 1. - Michael Somos, Oct 06 2014
0 = a(n)*(+a(n+1)*a(n+3) - a(n+2)^2) + a(n+2)*(-a(n+1)^2) for all n >= 0. - Michael Somos, Oct 06 2014
Sum_{n>=1} 1/a(n) = A101689. - Amiram Eldar, Oct 27 2020
Sum_{n>=1} (-1)^(n+1)/a(n) = A135598. - Amiram Eldar, Apr 12 2021
EXAMPLE
a(5) = 30 because the first 5 Fibonacci numbers are 1, 1, 2, 3, 5 and 1 * 1 * 2 * 3 * 5 = 30.
a(6) = 240 because 8 is the sixth Fibonacci number and a(5) * 8 = 240.
a(7) = 3120 because 13 is the seventh Fibonacci number and a(6) * 13 = 3120.
G.f. = 1 + x + x^2 + 2*x^3 + 6*x^4 + 30*x^5 + 240*x^6 + 3120*x^7 + ...
MAPLE
with(combinat): A003266 := n-> mul(fibonacci(i), i=1..n): seq(A003266(n), n=0..20);
MATHEMATICA
Rest[FoldList[Times, 1, Fibonacci[Range[20]]]] (* Harvey P. Dale, Jul 11 2011 *)
a[ n_] := If[ n < 0, 0, Fibonorial[n]]; (* Michael Somos, Oct 23 2017 *)
Table[Round[GoldenRatio^(n(n-1)/2) QFactorial[n, GoldenRatio-2]], {n, 20}] (* Vladimir Reshetnikov, Sep 14 2016 *)
PROG
(PARI) a(n)=prod(i=1, n, fibonacci(i)) \\ Charles R Greathouse IV, Jan 13 2012
(Haskell)
a003266 n = a003266_list !! (n-1)
a003266_list = scanl1 (*) $ tail a000045_list
-- Reinhard Zumkeller, Sep 03 2013
(Python)
from itertools import islice
def A003266_gen(): # generator of terms
a, b, c = 1, 1, 1
while True:
yield c
c *= a
a, b = b, a+b
A003266_list = list(islice(A003266_gen(), 20)) # Chai Wah Wu, Jan 11 2023
CROSSREFS
Cf. A123741 (for Fibonacci second version), A002110 (for primes), A070825 (for Lucas), A003046 (for Catalan), A126772 (for Padovan), A069777 (q-factorial numbers for sums of powers). - Johannes W. Meijer, Aug 21 2011]
Sequence in context: A027882 A306782 A106209 * A303169 A369198 A097385
KEYWORD
nonn,easy,nice
AUTHOR
EXTENSIONS
a(0)=1 prepended by Alois P. Heinz, Oct 12 2016
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 13 09:03 EDT 2024. Contains 373383 sequences. (Running on oeis4.)