login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A003266 Product of first n nonzero Fibonacci numbers F(1), ..., F(n).
(Formerly M1692)
59
1, 1, 1, 2, 6, 30, 240, 3120, 65520, 2227680, 122522400, 10904493600, 1570247078400, 365867569267200, 137932073613734400, 84138564904377984000, 83044763560621070208000, 132622487406311849122176000, 342696507457909818131702784000 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

COMMENTS

Equals right border of unsigned triangle A158472 - From Gary W. Adamson, Mar 20 2009

Three closely related sequences are A194157 (product of first n nonzero F(2*n)), A194158 (product of first n nonzero F(2*n-1)) and A123029 (a(2*n) = A194157(n) and a(2*n-1) = A194158(n)) - Johannes W. Meijer, Aug 21 2011

REFERENCES

R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics, second edition, Addison Wesley, p 597

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

T. D. Noe and Alois P. Heinz, Table of n, a(n) for n = 0..99 (terms n = 1..50 from T. D. Noe)

Alfred Brousseau, Fibonacci and Related Number Theoretic Tables, Fibonacci Association, San Jose, CA, 1972, p. 74.

Yuri V. Matiyasevich and Richard K. Guy, A new formula for pi, Amer. Math. Monthly 93 (1986), no. 8, 631-635. Math. Rev. 2000i:11199.

Stackexchange, Product of Fibonacci numbers using For/Do/While loops

Eric Weisstein's World of Mathematics, Fibonorial

Index to divisibility sequences

FORMULA

a(n) is asymptotic to C*phi^(n*(n+1)/2)/sqrt(5)^n where phi = (1 + sqrt(5))/2 is the golden ratio and the decimal expansion of C is given in A062073. - Benoit Cloitre, Jan 11 2003

a(n+3) = a(n+1)*a(n+2)/a(n) + a(n+2)^2/a(n+1). - Robert Israel, May 19 2014

a(0) = 1 by convention since empty products equal 1. - Michael Somos, Oct 06 2014

0 = a(n)*(+a(n+1)*a(n+3) - a(n+2)^2) + a(n+2)*(-a(n+1)^2) for all n >= 0. - Michael Somos, Oct 06 2014

EXAMPLE

a(5) = 30 because the first 5 Fibonacci numbers are 1, 1, 2, 3, 5 and 1 * 1 * 2 * 3 * 5 = 30.

a(6) = 240 because 8 is the sixth Fibonacci number and a(5) * 8 = 240.

a(7) = 3120 because 13 is the seventh Fibonacci number and a(6) * 13 = 3120.

G.f. = 1 + x + x^2 + 2*x^3 + 6*x^4 + 30*x^5 + 240*x^6 + 3120*x^7 + ...

MAPLE

with(combinat): A003266 := n-> mul(fibonacci(i), i=1..n): seq(A003266(n), n=0..20);

MATHEMATICA

Rest[FoldList[Times, 1, Fibonacci[Range[20]]]] (* Harvey P. Dale, Jul 11 2011 *)

(* Requires Version 10+ *) Fibonorial[Range[20]] (* Michael Somos, Oct 06 2014 *)

Table[Round[GoldenRatio^(n(n-1)/2) QFactorial[n, GoldenRatio-2]], {n, 20}] (* Vladimir Reshetnikov, Sep 14 2016 *)

PROG

(PARI) a(n)=prod(i=1, n, fibonacci(i)) \\ Charles R Greathouse IV, Jan 13 2012

(Haskell)

a003266 n = a003266_list !! (n-1)

a003266_list = scanl1 (*) $ tail a000045_list

-- Reinhard Zumkeller, Sep 03 2013

CROSSREFS

Cf. A000045.

A158472 [From Gary W. Adamson, Mar 20 2009]

Cf. A123741 (for Fibonacci second version), A002110 (for primes), A070825 (for Lucas), A003046 (for Catalan), A126772 (for Padovan), A069777 (q-factorial numbers for sums of powers). - Johannes W. Meijer, Aug 21 2011]

Cf. A176343, A238243, A238244.

Sequence in context: A089459 A027882 A106209 * A097385 A066068 A121406

Adjacent sequences:  A003263 A003264 A003265 * A003267 A003268 A003269

KEYWORD

nonn,easy,nice

AUTHOR

N. J. A. Sloane.

EXTENSIONS

a(0)=1 prepended by Alois P. Heinz, Oct 12 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified July 23 05:58 EDT 2017. Contains 289686 sequences.