OFFSET
0,3
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..100
FORMULA
a(n) = Fibonacci(n)*a(n-1) + 1, a(0) = 0.
a(n) ~ c * ((1+sqrt(5))/2)^(n^2/2+n/2) / 5^(n/2), where c = A062073 * A101689 = 3.317727324507285486862890025085971028467... is product of Fibonacci factorial constant (see A062073) and Sum_{n>=1} 1/(Product_{k=1..n} A000045(k) ). - Vaclav Kotesovec, Feb 20 2014
MAPLE
with(combinat);
a:= proc(n) option remember;
if n=0 then 0
else 1 + fibonacci(n)*a(n-1)
fi; end:
seq( a(n), n=0..20); # G. C. Greubel, Dec 07 2019
MATHEMATICA
a[n_]:= a[n]= If[n==0, 0, Fibonacci[n]*a[n-1] +1]; Table[a[n], {n, 0, 20}]
PROG
(PARI) a(n) = if(n==0, 0, 1 + fibonacci(n)*a(n-1) ); \\ G. C. Greubel, Dec 07 2019
(Magma)
function a(n)
if n eq 0 then return 0;
else return 1 + Fibonacci(n)*a(n-1);
end if; return a; end function;
[a(n): n in [0..20]]; // G. C. Greubel, Dec 07 2019
(Sage)
def a(n):
if (n==0): return 0
else: return 1 + fibonacci(n)*a(n-1)
[a(n) for n in (0..20)] # G. C. Greubel, Dec 07 2019
(GAP)
a:= function(n)
if n=0 then return 0;
else return 1 + Fibonacci(n)*a(n-1);
fi; end;
List([0..20], n-> a(n) ); # G. C. Greubel, Dec 07 2019
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Roger L. Bagula, Apr 15 2010
STATUS
approved