login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A236960
Given g.f. A(x) of this sequence, triangle A236961 transforms the diagonals in the table of successive iterations of A(x) such that A236961(n,0) = n^n.
7
1, 1, 2, 5, 16, 79, 720, 10735, 211802, 4968491, 132655760, 3943593218, 128724395888, 4567299614131, 174792721389278, 7170679832812100, 313729852611817418, 14576333351368836005, 716547887877448952206, 37150482490370675725494, 2025776434511141860123174, 115890536127998971200900825
OFFSET
1,3
LINKS
EXAMPLE
G.f.: A(x) = x + x^2 + 2*x^3 + 5*x^4 + 16*x^5 + 79*x^6 + 720*x^7 + 10735*x^8 + 211802*x^9 + 4968491*x^10 + 132655760*x^11 + 3943593218*x^12 +...
The table of coefficients in the successive iterations of A(x) begins:
[1, 0, 0, 0, 0, 0, 0, 0, 0, ...];
[1, 1, 2, 5, 16, 79, 720, 10735, 211802, ...];
[1, 2, 6, 21, 84, 410, 2876, 33235, 581074, ...];
[1, 3, 12, 54, 266, 1463, 9740, 90999, 1308954, ...];
[1, 4, 20, 110, 648, 4102, 28932, 248808, 2972926, ...];
[1, 5, 30, 195, 1340, 9705, 75264, 655599, 7059436, ...];
[1, 6, 42, 315, 2476, 20284, 174304, 1610487, 16952240, ...];
[1, 7, 56, 476, 4214, 38605, 366660, 3656975, 39586868, ...];
[1, 8, 72, 684, 6736, 68308, 712984, 7710392, 88021908, ...];
[1, 9, 90, 945, 10248, 114027, 1299696, 15223599, 185218134, ...];
[1, 10, 110, 1265, 14980, 181510, 2245428, 28396003, 369356822, ...]; ...
Then the triangle T=A236961 transforms the adjacent diagonals in the above table into each other, as illustrated by:
T*[1, 1, 6, 54, 648, 9705, 174304, 3656975, 88021908, ...]
= [1, 2, 12, 110, 1340, 20284, 366660, 7710392, 185218134, ...];
T*[1, 2, 12, 110, 1340, 20284, 366660, 7710392, 185218134, ...]
= [1, 3, 20, 195, 2476, 38605, 712984, 15223599, 369356822, ...];
T*[1, 3, 20, 195, 2476, 38605, 712984, 15223599, 369356822, ...]
= [1, 4, 30, 315, 4214, 68308, 1299696, 28396003, 701068918, ...]; ...
Triangle T=A236961 begins:
1;
1, 1;
4, 2, 1;
27, 11, 3, 1;
256, 94, 21, 4, 1;
3125, 1076, 217, 34, 5, 1;
46656, 15362, 2910, 412, 50, 6, 1;
823543, 262171, 47598, 6333, 695, 69, 7, 1;
16777216, 5198778, 915221, 116768, 12045, 1082, 91, 8, 1;
387420489, 117368024, 20182962, 2498414, 247151, 20871, 1589, 116, 9, 1;
10000000000, 2970653234, 501463686, 60678776, 5824330, 471666, 33761, 2232, 144, 10, 1; ...
such that column 0 equals A236961(n,0) = n^n.
PROG
(PARI) /* From Root Series G, Calculate T(n, k) of Triangle: */
{T(n, k)=local(F=x, M, N, P, m=max(n, k)); M=matrix(m+2, m+2, r, c, F=x;
for(i=1, r+c-2, F=subst(F, x, G +x*O(x^(m+2)))); polcoeff(F, c));
N=matrix(m+1, m+1, r, c, M[r, c]);
P=matrix(m+1, m+1, r, c, M[r+1, c]); (P~*N~^-1)[n+1, k+1]}
/* Calculates Root Series G and then Prints ROWS of Triangle: */
{ROWS=12; V=[1, 1]; print(""); print1("Root Sequence: [1, 1, ");
for(i=2, ROWS, V=concat(V, 0); G=x*truncate(Ser(V));
for(n=0, #V-1, if(n==#V-1, V[#V]=n^n-T(n, 0)); for(k=0, n, T(n, k))); print1(V[#V]", "); );
print1("...]"); print(""); print(""); print("Triangle begins:");
for(n=0, #V-2, for(k=0, n, print1(T(n, k), ", ")); print(""))}
CROSSREFS
Cf. A236961.
Sequence in context: A218168 A054960 A004110 * A290609 A048754 A176343
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Feb 01 2014
STATUS
approved