login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A236961
Triangle, read by rows, that transforms diagonals in the table of coefficients in the successive iterations of g.f. of A236960 such that column 0 equals T(n,0) = n^n.
7
1, 1, 1, 4, 2, 1, 27, 11, 3, 1, 256, 94, 21, 4, 1, 3125, 1076, 217, 34, 5, 1, 46656, 15362, 2910, 412, 50, 6, 1, 823543, 262171, 47598, 6333, 695, 69, 7, 1, 16777216, 5198778, 915221, 116768, 12045, 1082, 91, 8, 1, 387420489, 117368024, 20182962, 2498414, 247151, 20871, 1589, 116, 9, 1, 10000000000
OFFSET
0,4
EXAMPLE
This triangle begins:
1;
1, 1;
4, 2, 1;
27, 11, 3, 1;
256, 94, 21, 4, 1;
3125, 1076, 217, 34, 5, 1;
46656, 15362, 2910, 412, 50, 6, 1;
823543, 262171, 47598, 6333, 695, 69, 7, 1;
16777216, 5198778, 915221, 116768, 12045, 1082, 91, 8, 1;
387420489, 117368024, 20182962, 2498414, 247151, 20871, 1589, 116, 9, 1;
10000000000, 2970653234, 501463686, 60678776, 5824330, 471666, 33761, 2232, 144, 10, 1; ...
in which column 0 equals T(n,0) = n^n.
ILLUSTRATION.
This triangle transforms diagonals in the table of coefficients in the iterations of G(x), the g.f. of A236960, that starts as:
G(x) = x + x^2 + 2*x^3 + 5*x^4 + 16*x^5 + 79*x^6 + 720*x^7 + 10735*x^8 + 211802*x^9 + 4968491*x^10 + 132655760*x^11 + 3943593218*x^12 +...
The table of coefficients in the successive iterations of G(x) begins:
[1, 0, 0, 0, 0, 0, 0, 0, 0, ...];
[1, 1, 2, 5, 16, 79, 720, 10735, 211802, ...];
[1, 2, 6, 21, 84, 410, 2876, 33235, 581074, ...];
[1, 3, 12, 54, 266, 1463, 9740, 90999, 1308954, ...];
[1, 4, 20, 110, 648, 4102, 28932, 248808, 2972926, ...];
[1, 5, 30, 195, 1340, 9705, 75264, 655599, 7059436, ...];
[1, 6, 42, 315, 2476, 20284, 174304, 1610487, 16952240, ...];
[1, 7, 56, 476, 4214, 38605, 366660, 3656975, 39586868, ...];
[1, 8, 72, 684, 6736, 68308, 712984, 7710392, 88021908, ...];
[1, 9, 90, 945, 10248, 114027, 1299696, 15223599, 185218134, ...];
[1, 10, 110, 1265, 14980, 181510, 2245428, 28396003, 369356822, ...]; ...
Then this triangle T transforms the adjacent diagonals in the above table into each other, as illustrated by:
T*[1, 1, 6, 54, 648, 9705, 174304, 3656975, 88021908, ...]
= [1, 2, 12, 110, 1340, 20284, 366660, 7710392, 185218134, ...];
T*[1, 2, 12, 110, 1340, 20284, 366660, 7710392, 185218134, ...]
= [1, 3, 20, 195, 2476, 38605, 712984, 15223599, 369356822, ...];
T*[1, 3, 20, 195, 2476, 38605, 712984, 15223599, 369356822, ...]
= [1, 4, 30, 315, 4214, 68308, 1299696, 28396003, 701068918, ...]; ...
RELATED TRIANGLE.
Compare this triangle to the triangle A088956(n,k) = (n-k+1)^(n-k-1)*C(n,k), that transforms diagonals in the table of coefficients in the iterations of x/(1-x):
1;
1, 1;
3, 2, 1;
16, 9, 3, 1;
125, 64, 18, 4, 1;
1296, 625, 160, 30, 5, 1;
16807, 7776, 1875, 320, 45, 6, 1; ...
PROG
(PARI) /* From Root Series G, Calculate T(n, k) of Triangle: */
{T(n, k) = my(F=x, M, N, P, m=max(n, k)); M=matrix(m+2, m+2, r, c, F=x;
for(i=1, r+c-2, F=subst(F, x, G +x*O(x^(m+2)))); polcoeff(F, c));
N=matrix(m+1, m+1, r, c, M[r, c]);
P=matrix(m+1, m+1, r, c, M[r+1, c]); (P~*N~^-1)[n+1, k+1]}
/* Calculates Root Series G and then Prints ROWS of Triangle: */
{ROWS=12; V=[1, 1]; print(""); print1("Root Sequence: [1, 1, ");
for(i=2, ROWS, V=concat(V, 0); G=x*truncate(Ser(V));
for(n=0, #V-1, if(n==#V-1, V[#V]=n^n-T(n, 0)); for(k=0, n, T(n, k))); print1(V[#V]", "); );
print1("...]"); print(""); print(""); print("Triangle begins:");
for(n=0, #V-2, for(k=0, n, print1(T(n, k), ", ")); print(""))}
CROSSREFS
Cf. variants: A233531, A088956.
Sequence in context: A105623 A364870 A158835 * A245958 A138271 A136212
KEYWORD
nonn,tabl
AUTHOR
Paul D. Hanna, Feb 01 2014
STATUS
approved