login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A176345
Sum of gcd(k,n) from k = 1 to n over "regular" integers only (an integer k is regular if there is an x such that k^2 x == k (mod n))
5
1, 3, 5, 6, 9, 15, 13, 12, 15, 27, 21, 30, 25, 39, 45, 24, 33, 45, 37, 54, 65, 63, 45, 60, 45, 75, 45, 78, 57, 135, 61, 48, 105, 99, 117, 90, 73, 111, 125, 108, 81, 195, 85, 126, 135, 135, 93, 120, 91, 135, 165, 150, 105, 135, 189, 156, 185, 171, 117, 270, 121, 183, 195
OFFSET
1,2
COMMENTS
It is also the product of n and (2-1/p), taken over all primes p dividing n.
LINKS
S. Chen and W. Zhai, Reciprocals of the Gcd-Sum Functions, J. Int. Seq. 14 (2011) # 11.8.3.
J.-M. De Koninck and I. Katai, Some remarks on a paper of L. Toth, JIS 13 (2010) 10.1.2.
Laszlo Toth, A Gcd-Sum Function Over Regular Integers Modulo n, Journal of Integer Sequences, Vol. 12 (2009), Article 09.2.5.
Laszlo Toth, A survey of gcd-sum functions, J. Int. Seq. 13 (2010) # 10.8.1.
D. Zhang and W. Zhai, Mean Values of a Gcd-Sum Function Over Regular Integers Modulo n, J. Int. Seq. 13 (2010), 10.4.7.
D. Zhang and W. Zhai, Mean Values of a Class of Arithmetical Functions, J. Int. Seq. 14 (2011) #11.6.5.
FORMULA
Multiplicative with a(p^e) = 2*p^e-p^(e-1).
Dirichlet g.f.: zeta(s-1)*product_p (1+p^(1-s)-p^(-s)). Dirichlet convolution of the series of absolute values of A097945 with A000027. - R. J. Mathar, Jun 11 2011
From Daniel Suteu, Jun 27 2018: (Start)
a(n) = Sum_{d|n} d * phi(n/d) * mu(n/d)^2.
a(n) = Sum_{d|n, gcd(n/d, d) = 1} d * phi(n/d). (End)
From Richard L. Ollerton, May 07 2021: (Start)
a(n) = Sum_{k=1..n} mu(n/gcd(n,k))^2*gcd(n,k).
a(n) = Sum_{k=1..n} mu(gcd(n,k))^2*n/gcd(n,k)*phi(gcd(n,k))/phi(n/gcd(n,k)). (End)
From Vaclav Kotesovec, Aug 20 2021: (Start)
Dirichlet g.f.: zeta(s-1)^2 * Product_{primes p} (1 + p^(1-2*s) - p^(2-2*s) - p^(-s)).
Let f(s) = Product_{primes p} (1 + p^(1-2*s) - p^(2-2*s) - p^(-s)), then Sum_{k=1..n} a(k) ~ n^2 * (f(2)*(log(n)/2 + gamma - 1/4) + f'(2)/2), where f(2) = Product_{primes p} (1 - 2/p^2 + 1/p^3) = A065464 = 0.428249505677094..., f'(2) = f(2) * Sum_{primes p} log(p) * (3*p - 2) / (p^3 - 2*p + 1) = 0.6293283828324697510445630056425352981207558777167836747744750359407300858... and gamma is the Euler-Mascheroni constant A001620. (End)
a(n) = Sum_{k = 1..n} rad(gcd(k, n)) = Sum_{d divides n} rad(d)*phi(n/d), where rad(n) = A007947(n). - Peter Bala, Jan 22 2024
EXAMPLE
For n = 8, the regular integers mod 8 are 1,3,5,7,8, so the sum of gcd's of 8 with these numbers is 12.
MAPLE
A176345 := proc(n)
n*mul(2-1/p, p=numtheory[factorset](n)) ;
end proc:
seq(A176345(n), n=1..40) ; # R. J. Mathar, Sep 13 2016
MATHEMATICA
f[p_, e_] := 2*p^e - p^(e - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 11 2020 *)
PROG
(PARI) isregg(k, n) = {g = gcd(k, n); if ((n % g == 0) && (gcd(g, n/g) == 1), return(g), return(0)); }
a(n) = sum(k=1, n, isregg(k, n)) \\ Michel Marcus, May 25 2013
(PARI) a(n) = sumdiv(n, d, d * eulerphi(n/d) * moebius(n/d)^2); \\ Daniel Suteu, Jun 27 2018
(PARI) a(n) = my(f=factor(n)); prod(k=1, #f~, 2*f[k, 1]^f[k, 2] - f[k, 1]^(f[k, 2]-1)); \\ Daniel Suteu, Jun 27 2018
(PARI) for(n=1, 100, print1(direuler(p=2, n, (1 + p*X^2 - p^2*X^2 - X)/(1-p*X)^2)[n], ", ")) \\ Vaclav Kotesovec, Aug 20 2021
CROSSREFS
Sequence in context: A294909 A070111 A070117 * A101139 A309140 A102606
KEYWORD
nonn,mult,easy
AUTHOR
Jeffrey Shallit, Apr 15 2010
STATUS
approved