login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A065464 Decimal expansion of Product_{p prime}(1 - (2*p-1)/p^3). 14
4, 2, 8, 2, 4, 9, 5, 0, 5, 6, 7, 7, 0, 9, 4, 4, 4, 0, 2, 1, 8, 7, 6, 5, 7, 0, 7, 5, 8, 1, 8, 2, 3, 5, 4, 6, 1, 2, 1, 2, 9, 8, 5, 1, 3, 3, 5, 5, 9, 3, 6, 1, 4, 4, 0, 3, 1, 9, 0, 1, 3, 7, 9, 5, 3, 2, 1, 2, 3, 0, 5, 2, 1, 6, 1, 0, 8, 3, 0, 4, 4, 1, 0, 5, 3, 4, 8, 5, 1, 4, 5, 2, 4, 6, 8, 0, 6, 8, 5, 5, 4, 8, 0, 7, 5, 7 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

Sum_{n <= x} A189021(n) ~ kx, where k is this constant. - Charles R Greathouse IV, Jan 24 2018

The probability that a number chosen at random is squarefree and coprime to another randomly chosen random (see Schroeder, 2009). - Amiram Eldar, May 23 2020, corrected, Aug 04 2020

REFERENCES

Manfred Schroeder, Number Theory in Science and Communication, 5th edition, Springer, 2009, page 59.

LINKS

Table of n, a(n) for n=0..105.

R. J. Mathar, Hardy-Littlewood Constants Embedded into Infinite Products over All Positive Integers, arXiv:0903.2514 [math.NT], 2009-2011; Equation (116).

G. Niklasch, Some number theoretical constants: 1000-digit values [Cached copy]

Eric Weisstein's World of Mathematics, Carefree Couple

FORMULA

Equals A065463 divided by A013661. - R. J. Mathar, Mar 22 2011

Equals A065473 divided by A065480. - R. J. Mathar, May 02 2019

Equals (6/Pi^2)^2 * Product_{p prime} (1 + 1/(p^3 + p^2 - p - 1)) = 1.1587609... * (6/Pi^2)^2. - Amiram Eldar, May 23 2020

EXAMPLE

0.428249505677094440218765707581823546...

MATHEMATICA

$MaxExtraPrecision = 800; digits = 98; terms = 2000; LR = Join[{0, 0}, LinearRecurrence[{-2, 0, 1}, {-2, 3, -6}, terms+10]]; r[n_Integer] := LR[[n]]; (6/Pi^2)*Exp[NSum[r[n]*(PrimeZetaP[n-1]/(n-1)), {n, 3, terms}, NSumTerms -> terms, WorkingPrecision -> digits+10, Method -> "AlternatingSigns"]] // RealDigits[#, 10, digits]& // First (* Jean-François Alcover, Apr 16 2016 *)

CROSSREFS

Cf. A057434, A078078.

Cf. A065463, A013661.

Cf. A065473, A065480.

Sequence in context: A112152 A211883 A083489 * A201400 A040015 A144926

Adjacent sequences:  A065461 A065462 A065463 * A065465 A065466 A065467

KEYWORD

cons,nonn

AUTHOR

N. J. A. Sloane, Nov 19 2001

EXTENSIONS

More digits from Vaclav Kotesovec, Dec 18 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 28 03:13 EST 2020. Contains 338699 sequences. (Running on oeis4.)