login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A057434 a(n) = Sum_{k=1..n} phi(k)^2. 9
1, 2, 6, 10, 26, 30, 66, 82, 118, 134, 234, 250, 394, 430, 494, 558, 814, 850, 1174, 1238, 1382, 1482, 1966, 2030, 2430, 2574, 2898, 3042, 3826, 3890, 4790, 5046, 5446, 5702, 6278, 6422, 7718, 8042, 8618, 8874, 10474, 10618, 12382, 12782 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Partial sums of A127473. - R. J. Mathar, Sep 29 2008

LINKS

Ivan Neretin, Table of n, a(n) for n = 1..10000

U. Balakrishnan & Y.-F. S. Pétermann, The Dirichlet series of zeta(s)*zeta(s+1)^alpha*f(s+1): On an error term associated with its coefficients, Acta Arith. 75 (1996), 39--69.

FORMULA

We can derive an asymptotic formula from a general formula given in the reference, namely: a(n) = C*n^3 + O(log(x)^(4/3)log(log(x))^(8/3)) where C = (1/3)/zeta(2)^2*Product_{p prime}(1+1/(p-1)/(p+1)^2) = 0.142749835225698(...). - Benoit Cloitre, Dec 22 2015

a(n) ~ c * n^3 / 3, where c = A065464 = Product_{primes p} (1 - 2/p^2 + 1/p^3) = 0.4282495056770944402187657075818235461212985133559361440319... - Vaclav Kotesovec, Dec 18 2019

MATHEMATICA

FoldList[Plus, 1, EulerPhi[Range[2, 50]]^2] (* Ivan Neretin, May 30 2015 *)

PROG

(PARI) a(n) = sum(k=1, n, eulerphi(k)^2); \\ Michel Marcus, Dec 20 2015

CROSSREFS

Cf. A000010, A002088, A061502, A072379, A074789.

Sequence in context: A258143 A079713 A055237 * A333170 A217381 A333997

Adjacent sequences: A057431 A057432 A057433 * A057435 A057436 A057437

KEYWORD

nonn

AUTHOR

N. J. A. Sloane, Sep 08 2000

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 3 09:50 EST 2022. Contains 358517 sequences. (Running on oeis4.)