OFFSET
1,2
COMMENTS
Partial sums of A127473. - R. J. Mathar, Sep 29 2008
LINKS
Ivan Neretin, Table of n, a(n) for n = 1..10000
U. Balakrishnan & Y.-F. S. Pétermann, The Dirichlet series of zeta(s)*zeta(s+1)^alpha*f(s+1): On an error term associated with its coefficients, Acta Arith. 75 (1996), 39--69.
FORMULA
We can derive an asymptotic formula from a general formula given in the reference, namely: a(n) = C*n^3 + O(log(x)^(4/3)log(log(x))^(8/3)) where C = (1/3)/zeta(2)^2*Product_{p prime}(1+1/(p-1)/(p+1)^2) = 0.142749835225698(...). - Benoit Cloitre, Dec 22 2015
a(n) ~ c * n^3 / 3, where c = A065464 = Product_{primes p} (1 - 2/p^2 + 1/p^3) = 0.4282495056770944402187657075818235461212985133559361440319... - Vaclav Kotesovec, Dec 18 2019
MATHEMATICA
FoldList[Plus, 1, EulerPhi[Range[2, 50]]^2] (* Ivan Neretin, May 30 2015 *)
PROG
(PARI) a(n) = sum(k=1, n, eulerphi(k)^2); \\ Michel Marcus, Dec 20 2015
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Sep 08 2000
STATUS
approved