login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A057434
a(n) = Sum_{k=1..n} phi(k)^2.
12
1, 2, 6, 10, 26, 30, 66, 82, 118, 134, 234, 250, 394, 430, 494, 558, 814, 850, 1174, 1238, 1382, 1482, 1966, 2030, 2430, 2574, 2898, 3042, 3826, 3890, 4790, 5046, 5446, 5702, 6278, 6422, 7718, 8042, 8618, 8874, 10474, 10618, 12382, 12782
OFFSET
1,2
COMMENTS
Partial sums of A127473. - R. J. Mathar, Sep 29 2008
LINKS
FORMULA
We can derive an asymptotic formula from a general formula given in the reference, namely: a(n) = C*n^3 + O(log(x)^(4/3)log(log(x))^(8/3)) where C = (1/3)/zeta(2)^2*Product_{p prime}(1+1/(p-1)/(p+1)^2) = 0.142749835225698(...). - Benoit Cloitre, Dec 22 2015
a(n) ~ c * n^3 / 3, where c = A065464 = Product_{primes p} (1 - 2/p^2 + 1/p^3) = 0.4282495056770944402187657075818235461212985133559361440319... - Vaclav Kotesovec, Dec 18 2019
MATHEMATICA
FoldList[Plus, 1, EulerPhi[Range[2, 50]]^2] (* Ivan Neretin, May 30 2015 *)
PROG
(PARI) a(n) = sum(k=1, n, eulerphi(k)^2); \\ Michel Marcus, Dec 20 2015
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Sep 08 2000
STATUS
approved