login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A127473 a(n) = (phi(n))^2. 9
1, 1, 4, 4, 16, 4, 36, 16, 36, 16, 100, 16, 144, 36, 64, 64, 256, 36, 324, 64, 144, 100, 484, 64, 400, 144, 324, 144, 784, 64, 900, 256, 400, 256, 576, 144, 1296, 324, 576, 256, 1600, 144, 1764, 400, 576, 484, 2116, 256, 1764, 400, 1024, 576, 2704, 324, 1600 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

Number of maps of the form j |--> m*j + d with gcd(m, n) = 1 and gcd(d, n) = 1 from [1, 2, ..., n] to itself. - Joerg Arndt, Aug 29 2014

Right border of A127474.

Equals the Mobius transform (A054525) of A029939. - Gary W. Adamson, Aug 20 2008

From Jianing Song, Apr 14 2019: (Start)

a(n) is the number of solutions to gcd(xy, n) = 1 with x, y in [0, n-1].

Let Z_n be the ring of integers modulo n, then a(n) is the number of invertible elements in the ring Z_n[x]/(x^2 - x) (or equivalently, Z_n[x]/(x^2 + x)) with discriminant d = 1 (that is, a(n) is the size of the group G(n) = (Z_n[x]/(x^2 - x))*). Actually, G(n) is isomorphic to (Z_n)* X (Z_n)*. (End)

LINKS

Jens Kruse Andersen, Table of n, a(n) for n = 1..10000

FORMULA

a(n) = (A000010(n))^2.

Multiplicative with a(p^e) = (p-1)^2*p^(2e-2), e >= 1. Dirichlet g.f. zeta(s-2)*Product_{primes p} (1 - 2/p^(s-1) + 1/p^s). - R. J. Mathar, Apr 04 2011

Sum_{k>=1} 1/a(k) = A109695. - Vaclav Kotesovec, Sep 20 2020

EXAMPLE

a(5) = 16 since phi(5) = 4.

MAPLE

A127473 := proc(n) numtheory[phi](n)^2 ; end proc:

seq(A127473(n), n=1..40) ; # R. J. Mathar, Apr 04 2011

MATHEMATICA

Table[EulerPhi[n]^2, {n, 100}] (* Vladimir Joseph Stephan Orlovsky, Feb 02 2012 *)

PROG

(MAGMA) [(EulerPhi(n))^2: n in [1..180]]; // Vincenzo Librandi, Apr 04 2011

(PARI) a(n) = eulerphi(n)^2; \\ Michel Marcus, Oct 16 2018

CROSSREFS

Cf. A000010, A057434, A109695, A127474.

Similar sequences: A082953 (size of (Z_n[x]/(x^2 - 1))*, d = 4), A002618 ((Z_n[x]/(x^2))*, d = 0), A079458 ((Z_n[x]/(x^2 + 1))*, d = -4), A319445 ((Z_n[x]/(x^2 - x + 1))* or (Z_n[x]/(x^2 + x + 1))*, d = -3).

Sequence in context: A273563 A278254 A091278 * A289625 A040004 A079611

Adjacent sequences:  A127470 A127471 A127472 * A127474 A127475 A127476

KEYWORD

nonn,mult,changed

AUTHOR

Gary W. Adamson, Jan 15 2007

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 23 15:43 EDT 2020. Contains 337310 sequences. (Running on oeis4.)