OFFSET
1,2
COMMENTS
Number of units in the ring consisting of the Gaussian integers modulo n. - Jason Kimberley, Dec 07 2015
LINKS
Jason Kimberley, Table of n, a(n) for n = 1..10000
Jonathan M. Borwein, Adventures with the OEIS: Five sequences Tony may like, Guttmann 70th [Birthday] Meeting, 2015, revised May 2016. [Wayback Machine link]
Jonathan M. Borwein, Adventures with the OEIS: Five sequences Tony may like, Guttmann 70th [Birthday] Meeting, 2015, revised May 2016. [Cached copy, with permission]
Catalina Calderón, Jose Maria Grau, A. Oller-Marcén, and László Tóth, Counting invertible sums of squares modulo n and a new generalization of Euler's totient function, Publicationes Mathematicae-Debrecen, Vol. 87 (1-2) (2015), pp. 133-145; arXiv preprint, arXiv:1403.7878 [math.NT], 2014.
FORMULA
Multiplicative with a(2^e) = 2^(2*e-1), a(p^e) = (p^2-1)*p^(2*e-2) if p mod 4=3 and a(p^e) = (p-1)^2*p^(2*e-2) if p mod 4=1.
a(n) = A003557(n)^2 * a(A007947(n)), where a(2)=2, a(p)=(p-1)^2 for prime p=1(mod 4), a(p)=p^2-1 for prime p=3(mod 4), and a(n*m)=a(n)*a(m) for n coprime to m. - Jason Kimberley, Nov 16 2015
From Amiram Eldar, Feb 13 2024: (Start)
Dirichlet g.f.: zeta(s-2) * (1 - 1/2^(s-1)) * Product_{p prime > 2} (1 - 1/p^(s-1) - (-1)^((p-1)/2)*(p-1)/p^s).
Sum_{k=1..n} a(k) = c * n^3 / 3 + O(n^2 * log(n)), where c = (3/4) * Product_{p prime > 2} (1 - 1/p^2 - (-1)^((p-1)/2)*(p-1)/p^3) = (3/4) * A334427 * Product_{p prime == 1 (mod 4)} (1 - 2/p^2 + 1/p^3) = 0.6498027559... (Calderón et al., 2015). (End)
EXAMPLE
{1, i, 1+2i, 2+i, 3, 3i, 3+2i, 2+3i} is the set of eight units in the Gaussian integers modulo 4. - Jason Kimberley, Dec 07 2015
MAPLE
with(GaussInt): seq(GIphi(n), n=1..100);
MATHEMATICA
phi[1]=1; phi[p_, s_] := Which[Mod[p, 4] == 3, p^(2 s - 2) (p^2 - 1), Mod[p, 4] == 1, p^(2 s - 2) ((p - 1))^2, True, 2^(2 s - 1)]; phi[n_] := Product[phi[FactorInteger[n][[i, 1]], FactorInteger[n][[i, 2]]], {i, Length[FactorInteger[n]]}]; Table[phi[n], {n, 1, 33}] (* José María Grau Ribas, Mar 16 2014 *)
f[p_, e_] := (p - 1)*p^(2*e - 1) * If[p == 2, 1, 1 - (-1)^((p-1)/2)/p]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Feb 13 2024 *)
PROG
(Magma) A079458 := func<n|#UnitGroup(quo<IntegerRing(QuadraticField(-1))|n>)>; // Jason Kimberley, Nov 14 2015
(PARI)
a(n)=
{
my(r=1, f=factor(n));
for(j=1, #f[, 1], my(p=f[j, 1], e=f[j, 2]);
if(p==2, r*=2^(2*e-1));
if(p%4==1, r*=(p-1)^2*p^(2*e-2));
if(p%4==3, r*=(p^2-1)*p^(2*e-2));
);
return(r);
} \\ Jianing Song, Sep 16 2018
CROSSREFS
Equals four times A218147. - Jason Kimberley, Nov 14 2015
Sequences giving the number of solutions to the equation GCD(x_1^2+...+x_k^2, n) = 1 with 0 < x_i <= n: A000010 (k=1), A079458 (k=2), A053191 (k=3), A227499 (k=4), A238533 (k=5), A238534 (k=6), A239442 (k=7), A239441 (k=8), A239443 (k=9).
Equivalent of arithmetic functions in the ring of Gaussian integers (the corresponding functions in the ring of integers are in the parentheses): A062327 ("d", A000005), A317797 ("sigma", A000203), this sequence ("phi", A000010), A227334 ("psi", A002322), A086275 ("omega", A001221), A078458 ("Omega", A001222), A318608 ("mu", A008683).
Equivalent in the ring of Eisenstein integers: A319445.
KEYWORD
mult,easy,nonn
AUTHOR
Vladeta Jovovic, Jan 14 2003
STATUS
approved