|
|
A078458
|
|
Total number of factors in a factorization of n into Gaussian primes.
|
|
15
|
|
|
0, 2, 1, 4, 2, 3, 1, 6, 2, 4, 1, 5, 2, 3, 3, 8, 2, 4, 1, 6, 2, 3, 1, 7, 4, 4, 3, 5, 2, 5, 1, 10, 2, 4, 3, 6, 2, 3, 3, 8, 2, 4, 1, 5, 4, 3, 1, 9, 2, 6, 3, 6, 2, 5, 3, 7, 2, 4, 1, 7, 2, 3, 3, 12, 4, 4, 1, 6, 2, 5, 1, 8, 2, 4, 5, 5, 2, 5, 1, 10, 4, 4, 1, 6, 4, 3, 3, 7, 2, 6, 3, 5, 2, 3, 3, 11, 2, 4, 3, 8, 2, 5, 1, 8
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
a(n)+1 is also the total number of factors in a factorization of n+n*i into Gaussian primes. - Jason Kimberley, Dec 17 2011
|
|
LINKS
|
T. D. Noe, Table of n, a(n) for n = 1..10000
Michael Somos, PARI program for finding prime decomposition of Gaussian integers
Eric W. Weisstein, MathWorld: Gaussian Prime
Index entries for Gaussian integers and primes
|
|
FORMULA
|
Fully additive with a(p)=2 if p=2 or p mod 4=1 and a(p)=1 if p mod 4=3. - Vladeta Jovovic, Jan 20 2003
a(n) depends on the number of primes of the forms 4k+1 (A083025) and 4k-1 (A065339) and on the highest power of 2 dividing n (A007814): a(n) = 2*A007814(n) + 2*A083025(n) + A065339(n) - T. D. Noe, Jul 14 2003
|
|
EXAMPLE
|
2 = (1+i)*(1-i), so a(2) = 2; 9 = 3*3, so a(9) = 2.
a(1006655265000) = a(2^3*3^2*5^4*7^5*11^3) = 3*a(2)+2*a(3)+4*a(5)+5*a(7)+3*a(11) = 3*2+2*1+4*2+5*1+3*1 = 24. - Vladeta Jovovic, Jan 20 2003
|
|
MATHEMATICA
|
Join[{0}, Table[f = FactorInteger[n, GaussianIntegers -> True]; cnt = Total[Transpose[f][[2]]]; If[MemberQ[{-1, I, -I}, f[[1, 1]]], cnt--]; cnt, {n, 2, 100}]] (* T. D. Noe, Mar 31 2014 *)
|
|
PROG
|
(PARI) a(n)=my(f=factor(n)); sum(i=1, #f~, if(f[i, 1]%4==3, 1, 2)*f[i, 2]) \\ Charles R Greathouse IV, Mar 31 2014
|
|
CROSSREFS
|
Cf. A078908-A078911, A007814, A065339, A083025, A086275 (number of distinct Gaussian primes in the factorization of n).
Cf. A239626, A239627 (including units).
Sequence in context: A130584 A339046 A265911 * A033317 A183200 A326732
Adjacent sequences: A078455 A078456 A078457 * A078459 A078460 A078461
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
N. J. A. Sloane, Jan 11 2003
|
|
EXTENSIONS
|
More terms from Vladeta Jovovic, Jan 12 2003
|
|
STATUS
|
approved
|
|
|
|