OFFSET
1,9
LINKS
T. D. Noe, Table of n, a(n) for n=1..10000
FORMULA
From Antti Karttunen, Aug 14 2015: (Start)
a(1) = a(2) = 0; thereafter, if n is even, a(n) = a(n/2), otherwise a(n) = ((A020639(n) mod 4)-1)/2 + a(n/A020639(n)). [Where A020639(n) gives the smallest prime factor of n.]
Other identities and observations. For all n >= 1:
Totally additive with a(2) = 0, a(p) = 1 if p == 3 (mod 4), and a(p) = 0 if p == 1 (mod 4). - Amiram Eldar, Jun 17 2024
MAPLE
A065339 := proc(n)
a := 0 ;
for f in ifactors(n)[2] do
if op(1, f) mod 4 = 3 then
a := a+op(2, f) ;
end if;
end do:
a ;
end proc: # R. J. Mathar, Dec 16 2011
MATHEMATICA
f[n_]:=Plus@@Last/@Select[If[n==1, {}, FactorInteger[n]], Mod[#[[1]], 4]==3&]; Table[f[n], {n, 100}] (* Ray Chandler, Dec 18 2011 *)
PROG
(Haskell)
a065339 1 = 0
a065339 n = length [x | x <- a027746_row n, mod x 4 == 3]
-- Reinhard Zumkeller, Jan 10 2012
(PARI) A065339(n)=sum(i=1, #n=factor(n)~, if(n[1, i]%4==3, n[2, i])) \\ M. F. Hasler, Apr 16 2012
(Scheme, two variants using memoization-macro definec)
(definec (A065339 n) (cond ((< n 3) 0) ((even? n) (A065339 (/ n 2))) (else (+ (/ (- (modulo (A020639 n) 4) 1) 2) (A065339 (A032742 n))))))
(definec (A065339 n) (cond ((< n 3) 0) ((even? n) (A065339 (/ n 2))) ((= 1 (modulo (A020639 n) 4)) (A065339 (A032742 n))) (else (+ (A067029 n) (A065339 (A028234 n))))))
;; Antti Karttunen, Aug 14 2015
CROSSREFS
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Oct 29 2001
STATUS
approved