login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A083025
Number of primes congruent to 1 modulo 4 dividing n (with multiplicity).
41
0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 2, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 2, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 2, 0, 0, 1, 0, 1, 0, 0, 1, 1, 2, 0, 0, 1, 0, 1, 0, 1, 0, 0, 2, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 2, 1, 1, 0, 1, 1
OFFSET
1,25
REFERENCES
David A. Cox, "Primes of the Form x^2 + n y^2", Wiley, 1989, p. 61.
FORMULA
a(n) = A001222(n) - A007814(n) - A065339(n).
Totally additive with a(2) = 0, a(p) = 1 if p == 1 (mod 4), and a(p) = 0 if p == 3 (mod 4). - Amiram Eldar, Jun 17 2024
MAPLE
A083025 := proc(n)
a := 0 ;
for f in ifactors(n)[2] do
if op(1, f) mod 4 = 1 then
a := a+op(2, f) ;
end if;
end do:
a ;
end proc: # R. J. Mathar, Dec 16 2011
MATHEMATICA
f[n_]:=Plus@@Last/@Select[If[n==1, {}, FactorInteger[n]], Mod[#[[1]], 4]==1&]; Table[f[n], {n, 100}] (* Ray Chandler, Dec 18 2011 *)
PROG
(Haskell)
a083025 1 = 0
a083025 n = length [x | x <- a027746_row n, mod x 4 == 1]
-- Reinhard Zumkeller, Jan 10 2012
(PARI) A083025(n)=sum(i=1, #n=factor(n)~, if(n[1, i]%4==1, n[2, i])) \\ M. F. Hasler, Apr 16 2012
CROSSREFS
First differs from A046080 at n=65.
Cf. A001222, A007814, A027746, A065339 (== 3 (mod 4)).
Sequence in context: A015964 A088950 A267113 * A046080 A170967 A035227
KEYWORD
nonn,easy,nice
AUTHOR
Reinhard Zumkeller, Oct 29 2001
STATUS
approved