|
|
A083025
|
|
Number of primes congruent to 1 modulo 4 dividing n (with multiplicity).
|
|
39
|
|
|
0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 2, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 2, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 2, 0, 0, 1, 0, 1, 0, 0, 1, 1, 2, 0, 0, 1, 0, 1, 0, 1, 0, 0, 2, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 2, 1, 1, 0, 1, 1
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,25
|
|
REFERENCES
|
David A. Cox, "Primes of the Form x^2 + n y^2", Wiley, 1989, p. 61.
|
|
LINKS
|
T. D. Noe, Table of n, a(n) for n = 1..10000
|
|
FORMULA
|
a(n) = A001222(n) - A007814(n) - A065339(n).
|
|
MAPLE
|
A083025 := proc(n)
a := 0 ;
for f in ifactors(n)[2] do
if op(1, f) mod 4 = 1 then
a := a+op(2, f) ;
end if;
end do:
a ;
end proc: # R. J. Mathar, Dec 16 2011
|
|
MATHEMATICA
|
f[n_]:=Plus@@Last/@Select[If[n==1, {}, FactorInteger[n]], Mod[#[[1]], 4]==1&]; Table[f[n], {n, 100}] (* Ray Chandler, Dec 18 2011 *)
|
|
PROG
|
(Haskell)
a083025 1 = 0
a083025 n = length [x | x <- a027746_row n, mod x 4 == 1]
-- Reinhard Zumkeller, Jan 10 2012
(PARI) A083025(n)=sum(i=1, #n=factor(n)~, if(n[1, i]%4==1, n[2, i])) \\ M. F. Hasler, Apr 16 2012
|
|
CROSSREFS
|
First differs from A046080 at n=65.
Cf. A001222, A007814, A027746, A065339 (== 3 (mod 4)).
Sequence in context: A015964 A088950 A267113 * A046080 A170967 A035227
Adjacent sequences: A083022 A083023 A083024 * A083026 A083027 A083028
|
|
KEYWORD
|
nonn,easy,nice
|
|
AUTHOR
|
Reinhard Zumkeller, Oct 29 2001
|
|
STATUS
|
approved
|
|
|
|