login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A083026
Numbers that are congruent to {0, 2, 4, 5, 7, 9, 11} mod 12.
18
0, 2, 4, 5, 7, 9, 11, 12, 14, 16, 17, 19, 21, 23, 24, 26, 28, 29, 31, 33, 35, 36, 38, 40, 41, 43, 45, 47, 48, 50, 52, 53, 55, 57, 59, 60, 62, 64, 65, 67, 69, 71, 72, 74, 76, 77, 79, 81, 83, 84, 86, 88, 89, 91, 93, 95, 96, 98, 100, 101, 103, 105, 107, 108, 110
OFFSET
1,2
COMMENTS
Key-numbers of the pitches of a major scale on a standard chromatic keyboard, with root = 0.
Also key-numbers of the pitches of an Ionian mode scale on a standard chromatic keyboard, with root = 0. An Ionian mode scale can, for example, be played on consecutive white keys of a standard keyboard, starting on the root tone C.
Cumulative sum of A291454. - Halfdan Skjerning, Aug 30 2017
FORMULA
G.f.: x^2*(x + 1)*(x^5 + x^4 + x^3 + x^2 + 2)/((x^6 + x^5 + x^4 + x^3 + x^2 + x + 1)*(x - 1)^2). - R. J. Mathar, Oct 08 2011
From Wesley Ivan Hurt, Jul 20 2016: (Start)
a(n) = a(n-1) + a(n-7) - a(n-8) for n > 8.
a(n) = (84*n - 70 - 2*(n mod 7) - 2*((n + 1) mod 7) - 2*((n + 2) mod 7) + 5*((n + 3) mod 7) - 2*((n + 4) mod 7) - 2*((n + 5) mod 7) + 5*((n + 6) mod 7))/49.
a(7k) = 12k - 1, a(7k-1) = 12k - 3, a(7k-2) = 12k - 5, a(7k-3) = 12k - 7, a(7k-4) = 12k - 8, a(7k-5) = 12k - 10, a(7k-6) = 12k - 12. (End)
a(n) = a(n-7) + 12 for n > 7. - Jianing Song, Sep 22 2018
MAPLE
A083026:=n->12*floor(n/7)+[0, 2, 4, 5, 7, 9, 11][(n mod 7)+1]: seq(A083026(n), n=0..100); # Wesley Ivan Hurt, Jul 20 2016
MATHEMATICA
Select[Range[0, 150], MemberQ[{0, 2, 4, 5, 7, 9, 11}, Mod[#, 12]] &] (* Wesley Ivan Hurt, Jul 20 2016 *)
LinearRecurrence[{1, 0, 0, 0, 0, 0, 1, -1}, {0, 2, 4, 5, 7, 9, 11, 12}, 70] (* Jianing Song, Sep 22 2018 *)
Quotient[12*Range[60], 7] - 1 (* Federico Provvedi, Sep 10 2022 *)
PROG
(Magma) [n : n in [0..150] | n mod 12 in [0, 2, 4, 5, 7, 9, 11]]; // Wesley Ivan Hurt, Jul 20 2016
(PARI) a(n)=[-1, 0, 2, 4, 5, 7, 9][n%7+1] + n\7*12 \\ Charles R Greathouse IV, Jul 20 2016
(PARI) x='x+O('x^99); concat(0, Vec(x^2*(x+1)*(x^5+x^4+x^3+x^2+2)/((x^6+x^5+x^4+x^3+x^2+x+1)*(x-1)^2))) \\ Jianing Song, Sep 22 2018
CROSSREFS
Cf. A291454.
A guide for some sequences related to modes and chords:
Modes:
Lydian mode (F): A083089
Ionian mode (C): this sequence
Mixolydian mode (G): A083120
Dorian mode (D): A083033
Aeolian mode (A): A060107 (raised seventh: A083028)
Phrygian mode (E): A083034
Locrian mode (B): A082977
Chords:
Major chord: A083030
Minor chord: A083031
Dominant seventh chord: A083032
Sequence in context: A114055 A169581 A184858 * A047379 A093848 A049039
KEYWORD
nonn,easy
AUTHOR
James Ingram (j.ingram(AT)t-online.de), Jun 01 2003
STATUS
approved