OFFSET
1,2
COMMENTS
Key-numbers of the pitches of a minor common chord on a standard chromatic keyboard, with root = 0.
LINKS
Index entries for linear recurrences with constant coefficients, signature (1,0,1,-1).
FORMULA
G.f.: x^2*(3 + 4*x + 5*x^2)/((1 + x + x^2)*(1 - x)^2). - R. J. Mathar, Oct 08 2011
From Wesley Ivan Hurt, Jun 14 2016: (Start)
a(n) = a(n-1) + a(n-3) - a(n-4) for n > 4.
a(n) = (12*n - 14 - cos(2*n*Pi/3) + sqrt(3)*sin(2*n*Pi/3))/3.
a(3k) = 12k - 5, a(3k-1) = 12k - 9, a(3k-2) = 12k - 12. (End)
a(n) = a(n-3) + 12 for n > 3. - Jianing Song, Sep 22 2018
MAPLE
A083031:=n->(12*n-14-cos(2*n*Pi/3)+sqrt(3)*sin(2*n*Pi/3))/3: seq(A083031(n), n=1..100); # Wesley Ivan Hurt, Jun 14 2016
MATHEMATICA
Select[Range[0, 400], MemberQ[{0, 3, 7}, Mod[#, 12]] &] (* Wesley Ivan Hurt, Jun 14 2016 *)
LinearRecurrence[{1, 0, 1, -1}, {0, 3, 7, 12}, 100] (* Jianing Song, Sep 22 2018 *)
PROG
(Magma) [n : n in [0..300] | n mod 12 in [0, 3, 7]]; // Wesley Ivan Hurt, Jun 14 2016
(PARI) x='x+O('x^99); concat(0, Vec(x^2*(3+4*x+5*x^2)/((1+x+x^2)*(1-x)^2))) \\ Jianing Song, Sep 22 2018
CROSSREFS
A guide for some sequences related to modes and chords:
Modes:
Lydian mode (F): A083089
Ionian mode (C): A083026
Mixolydian mode (G): A083120
Dorian mode (D): A083033
Phrygian mode (E): A083034
Locrian mode (B): A082977
Chords:
Major chord: A083030
Minor chord: this sequence
Dominant seventh chord: A083032
KEYWORD
nonn,easy
AUTHOR
James Ingram (j.ingram(AT)t-online.de), Jun 01 2003
STATUS
approved