login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A083089
Numbers that are congruent to {0, 2, 4, 6, 7, 9, 11} mod 12.
16
0, 2, 4, 6, 7, 9, 11, 12, 14, 16, 18, 19, 21, 23, 24, 26, 28, 30, 31, 33, 35, 36, 38, 40, 42, 43, 45, 47, 48, 50, 52, 54, 55, 57, 59, 60, 62, 64, 66, 67, 69, 71, 72, 74, 76, 78, 79, 81, 83, 84, 86, 88, 90, 91, 93, 95, 96, 98, 100, 102, 103, 105, 107, 108, 110
OFFSET
1,2
COMMENTS
Key-numbers of the pitches of a Lydian mode scale on a standard chromatic keyboard, with root = 0. A Lydian mode scale can, for example, be played on consecutive white keys of a standard keyboard, starting on the root tone F.
FORMULA
G.f.: x^2*(x^4 + x^3 + 2)*(1 + x + x^2)/((x^6 + x^5 + x^4 + x^3 + x^2 + x + 1)*(x - 1)^2). - R. J. Mathar, Oct 08 2011
From Wesley Ivan Hurt, Jul 20 2016: (Start)
a(n) = a(n-1) + a(n-7) - a(n-8) for n > 8.
a(n) = (84*n - 63 - 2*(n mod 7) - 2*((n + 1) mod 7) + 5*((n + 2) mod 7) - 2*((n + 3) mod 7) - 2*((n + 4) mod 7) - 2*((n + 5) mod 7) + 5*((n + 6) mod 7))/49.
a(7k) = 12k - 1, a(7k - 1) = 12k - 3, a(7k-2) = 12k - 5, a(7k-3) = 12k - 6, a(7k-4) = 12k - 8, a(7k-5) = 12k - 10, a(7k-6) = 12k - 12. (End)
a(n) = 2*n - 2 - floor(2*(n - 1)/7). - Wesley Ivan Hurt, Sep 29 2017
a(n) = a(n-7) + 12 for n > 7. - Jianing Song, Sep 22 2018
MAPLE
A083089:=n->12*floor(n/7)+[0, 2, 4, 6, 7, 9, 11][(n mod 7)+1]: seq(A083089(n), n=0..100); # Wesley Ivan Hurt, Jul 20 2016
MATHEMATICA
Select[Range[0, 200], MemberQ[{0, 2, 4, 6, 7, 9, 11}, Mod[#, 12]]&] (* or *) LinearRecurrence[{1, 0, 0, 0, 0, 0, 1, -1}, {0, 2, 4, 6, 7, 9, 11, 12}, 90] (* Harvey P. Dale, Mar 29 2016 *)
PROG
(Magma) [n : n in [0..150] | n mod 12 in [0, 2, 4, 6, 7, 9, 11]]; // Wesley Ivan Hurt, Jul 20 2016
(PARI) a(n) = 2*(n-1)-2*(n-1)\7; \\ Altug Alkan, Sep 21 2018
(PARI) x='x+O('x^99); concat(0, Vec(x^2*(x^4+x^3+2)*(1+x+x^2)/((x^6+x^5+x^4+x^3+x^2+x+1)*(x-1)^2))) \\ Jianing Song, Sep 22 2018
CROSSREFS
A guide for some sequences related to modes and chords:
Modes:
Lydian mode (F): this sequence
Ionian mode (C): A083026
Mixolydian mode (G): A083120
Dorian mode (D): A083033
Aeolian mode (A): A060107 (raised seventh: A083028)
Phrygian mode (E): A083034
Locrian mode (B): A082977
Chords:
Major chord: A083030
Minor chord: A083031
Dominant seventh chord: A083032
Sequence in context: A083088 A080755 A372779 * A136617 A275814 A285376
KEYWORD
nonn,easy
AUTHOR
James Ingram (j.ingram(AT)t-online.de), Jun 01 2003
STATUS
approved