OFFSET
1,2
COMMENTS
Key-numbers of the pitches of a Lydian mode scale on a standard chromatic keyboard, with root = 0. A Lydian mode scale can, for example, be played on consecutive white keys of a standard keyboard, starting on the root tone F.
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 1..2000
Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,0,0,1,-1).
FORMULA
G.f.: x^2*(x^4 + x^3 + 2)*(1 + x + x^2)/((x^6 + x^5 + x^4 + x^3 + x^2 + x + 1)*(x - 1)^2). - R. J. Mathar, Oct 08 2011
From Wesley Ivan Hurt, Jul 20 2016: (Start)
a(n) = a(n-1) + a(n-7) - a(n-8) for n > 8.
a(n) = (84*n - 63 - 2*(n mod 7) - 2*((n + 1) mod 7) + 5*((n + 2) mod 7) - 2*((n + 3) mod 7) - 2*((n + 4) mod 7) - 2*((n + 5) mod 7) + 5*((n + 6) mod 7))/49.
a(7k) = 12k - 1, a(7k - 1) = 12k - 3, a(7k-2) = 12k - 5, a(7k-3) = 12k - 6, a(7k-4) = 12k - 8, a(7k-5) = 12k - 10, a(7k-6) = 12k - 12. (End)
a(n) = 2*n - 2 - floor(2*(n - 1)/7). - Wesley Ivan Hurt, Sep 29 2017
a(n) = a(n-7) + 12 for n > 7. - Jianing Song, Sep 22 2018
MAPLE
A083089:=n->12*floor(n/7)+[0, 2, 4, 6, 7, 9, 11][(n mod 7)+1]: seq(A083089(n), n=0..100); # Wesley Ivan Hurt, Jul 20 2016
MATHEMATICA
Select[Range[0, 200], MemberQ[{0, 2, 4, 6, 7, 9, 11}, Mod[#, 12]]&] (* or *) LinearRecurrence[{1, 0, 0, 0, 0, 0, 1, -1}, {0, 2, 4, 6, 7, 9, 11, 12}, 90] (* Harvey P. Dale, Mar 29 2016 *)
PROG
(Magma) [n : n in [0..150] | n mod 12 in [0, 2, 4, 6, 7, 9, 11]]; // Wesley Ivan Hurt, Jul 20 2016
(PARI) a(n) = 2*(n-1)-2*(n-1)\7; \\ Altug Alkan, Sep 21 2018
(PARI) x='x+O('x^99); concat(0, Vec(x^2*(x^4+x^3+2)*(1+x+x^2)/((x^6+x^5+x^4+x^3+x^2+x+1)*(x-1)^2))) \\ Jianing Song, Sep 22 2018
CROSSREFS
A guide for some sequences related to modes and chords:
Modes:
Lydian mode (F): this sequence
Ionian mode (C): A083026
Mixolydian mode (G): A083120
Dorian mode (D): A083033
Phrygian mode (E): A083034
Locrian mode (B): A082977
Chords:
Major chord: A083030
Minor chord: A083031
Dominant seventh chord: A083032
KEYWORD
nonn,easy
AUTHOR
James Ingram (j.ingram(AT)t-online.de), Jun 01 2003
STATUS
approved