The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A083033 Numbers that are congruent to {0, 2, 3, 5, 7, 9, 10} mod 12. 16
 0, 2, 3, 5, 7, 9, 10, 12, 14, 15, 17, 19, 21, 22, 24, 26, 27, 29, 31, 33, 34, 36, 38, 39, 41, 43, 45, 46, 48, 50, 51, 53, 55, 57, 58, 60, 62, 63, 65, 67, 69, 70, 72, 74, 75, 77, 79, 81, 82, 84, 86, 87, 89, 91, 93, 94, 96, 98, 99, 101, 103, 105, 106, 108, 110, 111 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Key-numbers of the pitches of a Dorian mode scale on a standard chromatic keyboard, with root = 0. A Dorian mode scale can, for example, be played on consecutive white keys of a standard keyboard, starting on the root tone D. LINKS Muniru A Asiru, Table of n, a(n) for n = 1..2000 Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,0,0,1,-1). FORMULA G.f.: x^2*(x^2 + 1)*(2*x^4 + x^3 + x + 2)/((x^6 + x^5 + x^4 + x^3 + x^2 + x + 1)*(x - 1)^2). - R. J. Mathar, Oct 08 2011 From Wesley Ivan Hurt, Jul 20 2016: (Start) a(n) = a(n-1) + a(n-7) - a(n-8) for n > 8. a(n) = (84*n - 84 + 5*(n mod 7) - 2*((n + 1) mod 7) - 2*((n + 2) mod 7) - 2*((n + 3) mod 7) + 5*((n + 4) mod 7) - 2*((n + 5) mod 7) - 2*((n + 6) mod 7))/49. a(7k) = 12k - 2, a(7k-1) = 12k - 3, a(7k-2) = 12k - 5, a(7k-3) = 12k - 7, a(7k-4) = 12k - 9, a(7k-5) = 12k - 10, a(7k-6) = 12k - 12. (End) a(n) = a(n-7) + 12 for n > 7. - Jianing Song, Sep 22 2018 MAPLE A083033:=n->12*floor(n/7)+[0, 2, 3, 5, 7, 9, 10][(n mod 7)+1]: seq(A083033(n), n=0..100); # Wesley Ivan Hurt, Jul 20 2016 MATHEMATICA Select[Range[0, 150], MemberQ[{0, 2, 3, 5, 7, 9, 10}, Mod[#, 12]] &] (* Wesley Ivan Hurt, Jul 20 2016 *) LinearRecurrence[{1, 0, 0, 0, 0, 0, 1, -1}, {0, 2, 3, 5, 7, 9, 10, 12}, 70] (* Jianing Song, Sep 22 2018 *) PROG (MAGMA) [n : n in [0..150] | n mod 12 in [0, 2, 3, 5, 7, 9, 10]]; // Wesley Ivan Hurt, Jul 20 2016 (PARI) a(n)=[-2, 0, 2, 3, 5, 7, 9][n%7+1] + n\7*12 \\ Charles R Greathouse IV, Jul 20 2016 (PARI) x='x+O('x^99); concat(0, Vec(x^2*(x^2+1)*(2*x^4+x^3+x+2)/((x^6+x^5+x^4+x^3+x^2+x+1)*(x-1)^2))) \\ Jianing Song, Sep 22 2018 (GAP) Filtered([0..120], n-> n mod 12=0 or n mod 12=2 or n mod 12=3 or n mod 12=5 or n mod 12=7 or n mod 12=9 or n mod 12=10); # Muniru A Asiru, Sep 22 2018 CROSSREFS A guide for some sequences related to modes and chords: Modes: Lydian mode (F): A083089 Ionian mode (C): A083026 Mixolydian mode (G): A083120 Dorian mode (D): this sequence Aeolian mode (A): A060107 (raised seventh: A083028) Phrygian mode (E): A083034 Locrian mode (B): A082977 Chords: Major chord: A083030 Minor chord: A083031 Dominant seventh chord: A083032 Sequence in context: A226249 A076355 A081477 * A022847 A047371 A327492 Adjacent sequences:  A083030 A083031 A083032 * A083034 A083035 A083036 KEYWORD nonn,easy AUTHOR James Ingram (j.ingram(AT)t-online.de), Jun 01 2003 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 20 20:02 EDT 2020. Contains 337265 sequences. (Running on oeis4.)