login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A060107
Numbers that are congruent to {0, 2, 3, 5, 7, 8, 10} mod 12. The ivory keys on a piano, start with A0 = the 0th key.
20
0, 2, 3, 5, 7, 8, 10, 12, 14, 15, 17, 19, 20, 22, 24, 26, 27, 29, 31, 32, 34, 36, 38, 39, 41, 43, 44, 46, 48, 50, 51, 53, 55, 56, 58, 60, 62, 63, 65, 67, 68, 70, 72, 74, 75, 77, 79, 80, 82, 84, 86, 87, 89, 91, 92, 94, 96, 98, 99, 101, 103, 104, 106, 108, 110, 111, 113, 115
OFFSET
1,2
COMMENTS
More precisely, the key-numbers of the pitches of a minor scale on a standard chromatic keyboard, with root = 0 and flat seventh.
Also key-numbers of the pitches of an Aeolian mode scale on a standard chromatic keyboard, with root = 0. An Aeolian mode scale can, for example, be played on consecutive white keys of a standard keyboard, starting on the root tone A.
A piano sequence since if a(n) < 88 then A059620(a(n)) = 0.
FORMULA
a(n) = a(n-7) + 12 for n > 7.
a(n) = a(n-1) + a(n-7) - a(n-8) for n > 8.
G.f.: x^2*(2 + x + 2*x^2 + 2*x^3 + x^4 + 2*x^5 + 2*x^6)/((x^6 + x^5 + x^4 + x^3 + x^2 + x + 1)*(x - 1)^2). - R. J. Mathar, Oct 08 2011
From Wesley Ivan Hurt, Jul 20 2016: (Start)
a(n) = (84*n - 91 - 2*(n mod 7) + 5*((n + 1) mod 7) - 2*((n + 2) mod 7) - 2*((n + 3) mod 7) + 5*((n + 4) mod 7) - 2*((n + 5) mod 7) - 2*((n + 6) mod 7))/49.
a(7k) = 12k - 2, a(7k-1) = 12k - 4, a(7k-2) = 12k - 5, a(7k-3) = 12k - 7, a(7k-4) = 12k - 9, a(7k-5) = 12k - 10, a(7k-6) = 12k - 12. (End)
a(n) = A081031(n) - 1 for 1 <= n <= 36. - Jianing Song, Oct 14 2019
MAPLE
A060107:=n->12*floor(n/7)+[0, 2, 3, 5, 7, 8, 10][(n mod 7)+1]: seq(A060107(n), n=0..100); # Wesley Ivan Hurt, Jul 20 2016
MATHEMATICA
Select[Range[0, 120], MemberQ[{0, 2, 3, 5, 7, 8, 10}, Mod[#, 12]]&] (* or *) LinearRecurrence[{1, 0, 0, 0, 0, 0, 1, -1}, {0, 2, 3, 5, 7, 8, 10, 12}, 70] (* Harvey P. Dale, Nov 10 2011 *)
PROG
(Magma) [n : n in [0..150] | n mod 12 in [0, 2, 3, 5, 7, 8, 10]]; // Wesley Ivan Hurt, Jul 20 2016
(PARI) x='x+O('x^99); concat(0, Vec(x^2*(2+x+2*x^2+2*x^3+x^4+2*x^5+2*x^6)/((x^6+x^5+x^4+x^3+x^2+x+1)*(x-1)^2))) \\ Jianing Song, Sep 22 2018
CROSSREFS
Cf. A059620, A081031. Complement of A060106.
A guide for some sequences related to modes and chords:
Modes:
Lydian mode (F): A083089
Ionian mode (C): A083026
Mixolydian mode (G): A083120
Dorian mode (D): A083033
Aeolian mode (A): this sequence (raised seventh: A083028)
Phrygian mode (E): A083034
Locrian mode (B): A082977
Chords:
Major chord: A083030
Minor chord: A083031
Dominant seventh chord: A083032
Sequence in context: A001912 A186221 A083027 * A333230 A159556 A219643
KEYWORD
easy,nonn
AUTHOR
Henry Bottomley, Feb 27 2001
STATUS
approved