login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A159556
Numbers that are the sum of distinct Fibonacci primes.
1
2, 3, 5, 7, 8, 10, 13, 15, 16, 18, 20, 21, 23, 89, 91, 92, 94, 96, 97, 99, 102, 104, 105, 107, 109, 110, 112, 233, 235, 236, 238, 240, 241, 243, 246, 248, 249, 251, 253, 254, 256, 322, 324, 325, 327, 329, 330, 332, 335, 337, 338, 340, 342, 343, 345, 1597, 1599, 1600
OFFSET
1,1
LINKS
EXAMPLE
For example: 7 = 5 + 2; 2 and 5 are Fibonacci numbers which are prime.
MAPLE
fibprimes:= select(isprime, [2, 3, seq(combinat:-fibonacci(ithprime(i)), i=3..100)]):
S:= expand(mul(1+x^p, p = fibprimes[1..11])):
sort(convert(map2(op, 2, indets(S, `^`)), list)): # Robert Israel, Jul 16 2015
MATHEMATICA
Union[Plus@@@Subsets[{2, 3, 5, 13, 89, 233, 1597}]] (* T. D. Noe, Apr 16 2009 *)
fibPrime={2, 3, 5, 13, 89, 233, 1597}; t=Rest[CoefficientList[Series[Product[1+x^fibPrime[[k]], {k, Length[fibPrime]}], {x, 0, fibPrime[[ -1]]}], x]]; Flatten[Position[t, _?(#>0&)]] (* T. D. Noe, Apr 15 2009 *)
PROG
(C) #include <stdio.h>
#define MAX_FIB 6
#define MAX_CALC 2580
int main() {
int fibs[] = {2, 3, 5, 13, 89, 233, 1597};
int num = 0;
int x = 0;
int index = 0;
for(x=1; x<MAX_CALC; x++) {
num = x;
for(index=MAX_FIB; index>-1; index--)
if(fibs[index]<=num) num-=fibs[index];
if(num==0) printf("%d, ", x);
}
printf("\n");
return 0;
}
CROSSREFS
Cf. A005478 (Fibonacci primes).
Sequence in context: A083027 A060107 A333230 * A219643 A194798 A302245
KEYWORD
nonn
AUTHOR
Jose Manuel Hernandez Jr. (j.hernandez38(AT)umiami.edu), Apr 14 2009
EXTENSIONS
Name corrected by T. D. Noe, Apr 15 2009
STATUS
approved