login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers that are the sum of distinct Fibonacci primes.
1

%I #22 Feb 13 2021 01:14:27

%S 2,3,5,7,8,10,13,15,16,18,20,21,23,89,91,92,94,96,97,99,102,104,105,

%T 107,109,110,112,233,235,236,238,240,241,243,246,248,249,251,253,254,

%U 256,322,324,325,327,329,330,332,335,337,338,340,342,343,345,1597,1599,1600

%N Numbers that are the sum of distinct Fibonacci primes.

%H Robert Israel, <a href="/A159556/b159556.txt">Table of n, a(n) for n = 1..10000</a>

%e For example: 7 = 5 + 2; 2 and 5 are Fibonacci numbers which are prime.

%p fibprimes:= select(isprime,[2,3,seq(combinat:-fibonacci(ithprime(i)),i=3..100)]):

%p S:= expand(mul(1+x^p, p = fibprimes[1..11])):

%p sort(convert(map2(op,2,indets(S,`^`)),list)): # _Robert Israel_, Jul 16 2015

%t Union[Plus@@@Subsets[{2,3,5,13,89,233,1597}]] (* _T. D. Noe_, Apr 16 2009 *)

%t fibPrime={2,3,5,13,89,233,1597}; t=Rest[CoefficientList[Series[Product[1+x^fibPrime[[k]], {k,Length[fibPrime]}], {x,0,fibPrime[[ -1]]}],x]]; Flatten[Position[t,_?(#>0&)]] (* _T. D. Noe_, Apr 15 2009 *)

%o (C) #include <stdio.h>

%o #define MAX_FIB 6

%o #define MAX_CALC 2580

%o int main() {

%o int fibs[] = {2, 3, 5, 13, 89, 233, 1597};

%o int num = 0;

%o int x = 0;

%o int index = 0;

%o for(x=1; x<MAX_CALC; x++) {

%o num = x;

%o for(index=MAX_FIB; index>-1; index--)

%o if(fibs[index]<=num) num-=fibs[index];

%o if(num==0) printf("%d, ", x);

%o }

%o printf("\n");

%o return 0;

%o }

%Y Cf. A005478 (Fibonacci primes).

%K nonn

%O 1,1

%A Jose Manuel Hernandez Jr. (j.hernandez38(AT)umiami.edu), Apr 14 2009

%E Name corrected by _T. D. Noe_, Apr 15 2009