login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A159557
Number of elements in the mutation class of a quiver of type D_n.
1
4, 6, 26, 80, 246, 810, 2704, 9252, 32066, 112720, 400024, 1432860, 5170604, 18784170, 68635478, 252088496, 930138522, 3446167860, 12815663844, 47820447028, 178987624514, 671825133648, 2528212128776, 9536895064400
OFFSET
3,1
COMMENTS
Table 1, p. 15 of Buan et al.
Except for a(4) = 6 the same as A003239. - Joerg Arndt, Aug 04 2014
LINKS
Bakke Buan, Hermund André Torkildsen, The number of elements in the mutation class of a quiver of type $D_n$, arXiv:0812.2240 [math.RT], (14-April-2009)
FORMULA
a(n) = 6 if n = 4; otherwise a(n) = SUM[d|n] (phi(n/d))C(2d,d)/(2n) where phi is the Euler function, when n>4.
For n>4 a(n) = SUM[d|n] A000010(n/d)*A000984(d)/(2*n)
MAPLE
A159557 := proc(n) if n = 3 then 4; elif n = 4 then 6; else add( numtheory[phi](n/d)*binomial(2*d, d), d=numtheory[divisors](n))/2/n ; fi; end: seq(A159557(n), n=3..40) ; # R. J. Mathar, Apr 16 2009
MATHEMATICA
a[4] = 6; a[n_] := Sum[EulerPhi[n/d]*Binomial[2d, d]/(2n), {d, Divisors[n]} ];
Table[a[n], {n, 3, 26}] (* Jean-François Alcover, Nov 28 2017 *)
CROSSREFS
Sequence in context: A370061 A192874 A371869 * A176756 A054094 A123873
KEYWORD
nonn
AUTHOR
Jonathan Vos Post, Apr 15 2009
EXTENSIONS
More terms from R. J. Mathar, Apr 16 2009
STATUS
approved