The OEIS is supported by the many generous donors to the OEIS Foundation.


(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A003239 Number of rooted planar trees with n non-root nodes: circularly cycling the subtrees at the root gives equivalent trees.
(Formerly M1222)
1, 1, 2, 4, 10, 26, 80, 246, 810, 2704, 9252, 32066, 112720, 400024, 1432860, 5170604, 18784170, 68635478, 252088496, 930138522, 3446167860, 12815663844, 47820447028, 178987624514, 671825133648, 2528212128776, 9536895064400, 36054433810102, 136583761444364, 518401146543812 (list; graph; refs; listen; history; text; internal format)
Also number of necklaces with 2*n beads, n white and n black (to get the correspondence, start at root, walk around outside of tree, use white if move away from the root, black if towards root).
Also number of terms in polynomial expression for permanent of generic circulant matrix of order n.
a(n) is the number of equivalence classes of n-compositions of n under cyclic rotation. (Given a necklace, split it into runs of white followed by a black bead and record the lengths of the white runs. This gives an n-composition of n.) a(n) is the number of n-multisets in Z mod n whose sum is 0. - David Callan, Nov 05 2003
Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 305 (see R(x)).
F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973; page 80, Problem 3.13.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 7.112(b).
Seiichi Manyama, Table of n, a(n) for n = 0..1669 (terms 0..200 from T. D. Noe)
Bruce M. Boman, Thien-Nam Dinh, Keith Decker, Brooks Emerick, Christopher Raymond, and Gilberto Schleinger, Why do Fibonacci numbers appear in patterns of growth in nature?, Fibonacci Quarterly, 55(5) (2017), 30-41.
R. Brualdi and M. Newman, An enumeration problem for a congruence equation, J. Res. Nat. Bureau Standards, B74 (1970), 37-40.
CombOS - Combinatorial Object Server, Generate rooted plane trees.
Paul Drube and Puttipong Pongtanapaisan, Annular Non-Crossing Matchings, Journal of Integer Sequences, Vol. 19 (2016), #16.2.4.
A. Elashvili and M. Jibladze, Hermite reciprocity for the regular representations of cyclic groups, Indag. Math. (N.S.) 9(2) (1998), 233--238. MR1691428 (2000c:13006).
A. Elashvili, M. Jibladze, and D. Pataraia, Combinatorics of necklaces and "Hermite reciprocity", J. Algebraic Combin. 10(2) (1999), 173--188. MR1719140 (2000j:05009). See p. 174. - N. J. A. Sloane, Aug 06 2014
M. L. Fredman, A symmetry relationship for a class of partitions, J. Combin. Theory Ser. A, 18 (1975), 199-202. See Eq. (4), a(n) = S(n,n,0).
F. Harary and R. W. Robinson, The number of achiral trees, J. Reine Angew. Math., 278 (1975), 322-335.
F. Harary and R. W. Robinson, The number of achiral trees, J. Reine Angew. Math., 278 (1975), 322-335. (Annotated scanned copy)
Thomas C. Hull and Tomohiro Tachi, Double-line rigid origami, arXiv:1709.03210 [math.MG], 2017.
Benjamin Ruoyu Kan, Polynomial Approximations for Quantum Hamiltonian Complexity, Bachelor's thesis, Harvard Univ., 2023.
G. Labelle and P. Leroux, Enumeration of (uni- or bicolored) plane trees according to their degree distribution, Disc. Math. 157 (1996), 227-240, Eq. (1.18).
J. Malenfant, On the Matrix-Element Expansion of a Circulant Determinant, arXiv preprint arXiv:1502.06012 [math.NT], 2015.
Paul Melotti, Sanjay Ramassamy, and Paul Thévenin, Points and lines configurations for perpendicular bisectors of convex cyclic polygons, arXiv:2003.11006 [math.CO], 2020.
J. Sawada, Generating rooted and free plane trees, ACM Transactions on Algorithms, 2(1) (2006), 1-13.
D. W. Walkup, The number of plane trees, Mathematika, 19(2) (1972), 200-204. - From N. J. A. Sloane, Jun 08 2012
a(n) = Sum_{d|n} (phi(n/d)*binomial(2*d, d))/(2*n) for n > 0.
a(n) = (1/n)*Sum_{d|n} (phi(n/d)*binomial(2*d-1, d)) for n > 0.
a(n) = A047996(2*n, n). - Philippe Deléham, Jul 25 2006
a(n) ~ 2^(2*n-1) / (sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Aug 22 2015
with(numtheory): A003239 := proc(n) local t1, t2, d; t2 := divisors(n); t1 := 0; for d in t2 do t1 := t1+phi(n/d)*binomial(2*d, d)/(2*n); od; t1; end;
spec := [ C, {B=Union(Z, Prod(B, B)), C=Cycle(B)}, unlabeled ]; [seq(combstruct[count](spec, size=n), n=0..40)];
a[n_] := Sum[ EulerPhi[n/k]*Binomial[2k, k]/(2n), {k, Divisors[n]}]; a[0] = 1; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Apr 11 2012 *)
C(n, k)=binomial(n, k);
a(n) = if(n<=0, n==0, sumdiv(n, d, eulerphi(n/d) * C(2*d, d)) / (2*n) );
/* or, second formula: */
/* a(n) = if(n<=0, n==0, sumdiv(n, d, eulerphi(n/d) * C(2*d-1, d)) / n ); */
/* Joerg Arndt, Oct 21 2012 */
def A003239(n):
if n == 0: return 1
return sum(euler_phi(n/d)*binomial(2*d, d)/(2*n) for d in divisors(n))
print([A003239(n) for n in (0..29)]) # Peter Luschny, Dec 10 2020
Column k=2 of A208183.
Column k=1 of A261494.
Sequence in context: A148102 A179381 A096807 * A195924 A116673 A135410
Sequence corrected and extended by Roderick J. Fletcher (yylee(AT)mail.ncku.edu.tw), Aug 1997
Additional comments from Michael Somos

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 23 18:16 EDT 2024. Contains 371916 sequences. (Running on oeis4.)