login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A003240
Number of partially achiral rooted trees.
(Formerly M1123)
1
1, 1, 2, 4, 8, 16, 31, 62, 120, 236, 454, 884, 1697, 3275, 6266, 12020, 22935, 43788, 83325, 158516, 300914, 570794, 1081157, 2045934, 3867617, 7304149, 13783221, 25984936, 48956715, 92155376, 173376484, 325919786, 612378787, 1149777034
OFFSET
1,3
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 1..3760 (terms 1..70 from Herman Jamke)
F. Harary and R. W. Robinson, The number of achiral trees, J. Reine Angew. Math., 278 (1975), 322-335.
F. Harary and R. W. Robinson, The number of achiral trees, J. Reine Angew. Math., 278 (1975), 322-335. (Annotated scanned copy)
FORMULA
a(n) ~ c * d^n * n, where d = 1.8332964415228533737988849634129366404833316666328290543862325494628120733... is the root of the equation Sum_{k>=1} A000081(k) / d^(2*k-1) = 1 and c = 0.030410107348865811204534352170117292921782094079168428605205142049899... - Vaclav Kotesovec, Dec 13 2020
PROG
(PARI) t(n)=local(A=x); if(n<1, 0, for(k=1, n-1, A/=(1-x^k+x*O(x^n))^polcoeff(A, k)); polcoeff(A, n))
{n=100; Ty2=sum(i=0, 100, t(i)*y^(2*i)); p=subst(y*Ty2/(y-Ty2), y, y+y*O(y^n)); p=Pol(p, y); r=subst(Ty2*(y+p+(p^2-subst(p, y, y^2))/(2*y))/y^2, y, x+x*O(x^n)); for(I=1, n-2, print1(polcoeff(r, i)", "))} \\ Herman Jamke (hermanjamke(AT)fastmail.fm), Feb 26 2008
CROSSREFS
Sequence in context: A239557 A001591 A194628 * A378698 A280543 A282566
KEYWORD
nonn,easy
EXTENSIONS
More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Feb 26 2008
STATUS
approved