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The number of achiral trees*)

By Frank Harary and Robert W. Robinson at Ann Arbor

1. Intreduction

Cayley [3], the first to count trees, was motivated by the problem of enumerating
saturated hydrocarbons. The concept of chirality in graph theory is also suggested by
that in organic chemistry. Following [5], p. 102, a planar graph can be drawn in the plane
with no pair of edges intersecting; a plane graph is so drawn. Let G be a plane graph.
Then it is self-evident that the reflection of G about any line in the plane results in a
unique plane graph G’ which may or may not be plane-equivalent to G. If G’ =+ G,
then G is a chiral graph; and if G’ = G, then G is achiral. Our first object is to count
achiral plane trees which we illustrate in Figure 1. Here trees (a) and (b) are both chiral

® Y, | (b) ©
Figure 1. Three different plane trees (
pla '
and are reflections of each other, while (¢) shows an achiral plane tree. 'Note that these
are three different plane trees with the same underlying tree.
A rooted tree has a distinguished point called the root. A planted tree is a rooted tree

in which the root is an endpoint. Figure 2 shows three rooted plane trees; two of which
are planted, and all have the same underlying tree as that of Figure 1. To illustrate

*) Research supported in part by grant 732502 from the Air Force Office of Scientific Research.
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chirality for rooted plane trees, we note that in Figure 2, (a) is chiral planted, (b) achiral E‘[cw‘“ﬁi
( mwed; (c) achiral rooted. :

(2)
Figure 2. Three rooted plane trees

We count achiral plane trees using the same general method [6], Chap. 3, which
works for all known types of unlabeled trees. This procedure counts planted trees (rather
easily), then rooted trees in terms of planted ones, and finally trees in terms of the others
using the dissimilarity characteristic device originally due to Otter.

This approach also serves to count partially achiral trees which have at least one
achiral plane embedding and achiral trees, for which every plane embedding is achiral.
The underlying tree of Figures 1 and 2 is partially achiral but not achiral, while the tree
of Figure 3 is achiral, since both of its plane embeddings are achiral.

A X

Figure 3. The plane embeddings of an achiral tree

The number of points is always » and we use the following notation for the number
of n-point trees of various types: v

' Generating
Type of tree Number function
planted Va V(z)
rooted ' T, T(x)
unrooted t, t(z)
planted plane fa f(x)
rooted plane En g(x)
- plane b, b(x)
achiral planted plane Pa p@)
achiral rooted plane r, r(z)

41*

L achiral plane a, a(x)
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. Generating
Type of tree Number function
partially achiral planted 7, 7 (x)
partially achiral rooted On o(z)
partially achiral Gy o (x)
achiral planted P, P(z)
achiral rooted R, R(x)
achiral A, A (z)

2. Achiral rooted plane trees
'The smallest planted plane trees are shown in Figure 4.

iy

Figure 4. Planted plane trees

o—

We note that f(z) = X{,2" since a planted tree must have at least two points in
n=2

order to have an er.lidpoint as the root. It is well-known [7] that
‘ :c 1
(1) flz) = 51t — (L —4a)]
and it follows at once from the binomial theorem that
i1 (2n—2
(2) fn+1:'i(n_1)'
The numbers in (2) are known as Catalan numbers. Many references on these numbers

are given by Brown [2] who traces them back to Euler [4], and Alter [1] supplies even
more references.

We now count achiral planted plane trees by expressing p(z) = 5 P,x" in terms
n=2

of itself and of f(z). All the planted plane trees of Figure 4 are achiral except for the last
two.

Theorem. The generating function p(x) for achiral planted plane trees is

3) p(@) =5 (— 1+ (1 + 22)(1 —4a??).

so that
2n—2 1/2

(4) pZn:(,:L_i) and p2n+1=7( nn)°
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Proof. We only need to verify (3) since (4) follows from (3) by the binomial theorem.

e first obtain a functional equation for p(x) by analyzing the structure of an achiral

| nted plane tree T with root r adjacent to point s. Consider the planted plane trees

T,,..., T, obtained from 7 by removing the root r and splitting the point s into %

new points, each an endpoint and a root of one of the T,. These T, are called the branches

of T at s and are numbered clockwise from the root in the order in which they occur

in the plane. In order to have T = T", its reflection, it is necessary that T, = T},

T,=T;_4,.... If kis even, all these trees are accounted for; if k is odd, the remaining

planted plane tree T, must itself be achiral. These considerations suggest the equation
with three factors, "2

) p@) = o((pa) +2) 3 ("))

The first factor z stands for the root point r of T. In the factor p(z) 4+ z, the term z
stands for the point s in the case of even k£ while p(z) stands for the tree T}, in the case

of odd k. In the last factor, the term f(z%)/z* counts the number of ways 21;0 choose an

“ordered pair of planted plane trees which are reflections of each other, and the n’th
power counts ordered n-tuples of such choices. The factor 1/z® is to keep from counting
the point s more than once.

Equation (5) can be rewritten in the usual way as

| _ a(pl@) +2)
@ B (= (TN

Substituting for f(z?) the expression given in (1) and solving foi' p(x) gives (3) after
petine algebraic manipulation. , .
L The smallest achiral rooted plane trees are shown in Figure 5.

1YYt

Figure 5. Achiral rooted plane trees

*—

We now count achiral rooted plane trees by expressing r(z) = Xr,z" in terms
. n=2
of f(z) and p(z), which requires the use of Pélya’s counting theorem.

Theorem, The generating function r(z) for achiral rooted plane trees is

z2

M ra) =
so that
(8) r, = 2""%

C
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Proof. Relation (8) is immediate from (7). A functional equation for r(z) is obtained
by analyzing the structure of an achiral rooted plane tree 7' with root r. Consider the
branches of T at r, say T, ..., T; in clockwise order around r as they occur in the plane.
Since the starting point is arbltrary, the sequence T, ..., T4y corresponds to the
same tree T for any cyclic permutation o of {1, ..., k}. Since the converse is evident,
we have (in the parlance of Polya’s counting theorem) established a 1 — 1 correspondence
between rooted plane trees and configurations from a domain with cyclic group into
the set of planted plane trees.

In order to apply Polya’s classical enumeration theorem, we use the cycle index
Z(C,; 8y, Sgr -+ §;) of the cyclic group C, which is a polynomial in the & variables s,;
see Polya [9] or [6], Chap. 2. Then the generating function for rooted plane trees which
we require as an intermediate step is

(9) g(x) = xk;?al' Z(Cy; @)z, f@?)7%, . . ., f(2")]aF).

This result was obtained in [7], in connection with the enumeration of plane trees.

Now suppose that instead of the cyclic group on {1, ..., k}-we allow the dihedral
group D,, which includes in addition the k reflections. It is well known [5], p. 184, that

Z(Dggy1; 8150+ s Soki1) = Z(Czk+1) + s 32
(10)

1 1
Z(Dzk;slv e =939J;)_ :7Z(Czk) +Zs§ + 4 S%Sg~1a

in which it is understood that Z(C,) = Z(C,; 81, ) Sa)-

However we need a modification of this cycle index in order to include a new vari-
able s* which indicates a point fixed by a reflection. Then the new cycle index which
results is written Z(D,,; Sy, Szs « - -, Sm; ST) and is obtained by replacing s, by s¥ in the
last term of each equation in (10).

Using this modification of Z(D,,), the following generatmg function counts iso-
morphism classes of rooted plane trees with respect to both rotations and reflections:

(11) z mé; Z(Dn; f (x)/w, @), . .., f@")="; p (x)lx)-

Strictly speaking, a complete proof would have to begin with Burnside’s Lemma, [5],
p. 181.

- The difference between (9) and (11) is that any tree T is considered "equivalent
to its reflection 7’ under the dihedral group, so the pair is counted only once in (11)
instead of twice as in (9). Thus the rooted plane trees which are achiral are counted by

12) 2 [296 Z(D,,; f@)[x, . . ., f@™)z™; p(x)[z) — xZ(Cpi f(@)[2; - - - f(fv’f’)lz'”)]-

m=

In view of the modification of (10) to contain the new variable sf, this becomes

) Slp@reym + (v + (pperier )

Rewriting (13) in the usual way, we obtain
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With the help of (6), we easily find

¥p0n substituting for p(z) the expression given in (3), the relation simplifies to (7).

We note in passing that the reasoning which led to (12) is analogous to the key
idea of Read [10] for counting self-complementary graphs and digraphs.

3. Dissimilarity characteristic

Because the result (16) will be used in counting achiral plane trees, partially achiral
trees, and (totally) achiral trees, we develop it by itself in this lemma-like section.

In the now classical dissimilarity characteristic equation for trees due to Otter
[8], the equation p — ¢ = 1 for a given tree T with p points and ¢ lines [5], p- 33 is recast
into a new form which counts points and lines with equivalence determined by the auto-
morphism group I'(T). We now require a further modification of Otter’s equation in
which there is a given tree T and some subtree S which is invariant under all automor-
phisms of T.

Let p* be the number of points of S which are dissimilar under the action I'(T),
g* the corresponding number of dissimlar lines of S, and s* = 1 or 0 according as T has
or has not a “symmetry line” which is mapped to itself with ends reversed by some auto-
morphism. Then the subtree form of Otter’s dissimilarity characteristic equation is

(16) . p*—q* +s* =1.

The proof is omitted, as 1t is essentially the same as that of Otter’s equation, out-

1 in [5], p. 189.
The different applications of (16) are obtained by considering appropriate subtrees
§ of T. The purpose in each case is to obtain the number of unrooted trees of the desired
kind in terms of rooted trees. For achiral plane trees, we will take the subtree S consisting
of those points and lines left fixed by some reflection of T, as we show in the next section.

4. Achiral plane trees

In Sections 1 and 2 we found explicit closed forms (1), (3) and (7) for the ordlnary
generating functions f(z), p(z) and r(z) which count plane trees which are planted, achiral
planted and achiral rooted, respectively. Using (16) we now find a(z) in terms of f(x),
p(z) and r(z). For any achlral plane tree T let T* be the subgraph consisting of all points
and lines of 7' which are left fixed by some reflection of T. For a line to be included in
T* we insist that some reflection of 7 {ix both of its points. It is clear that T* is invariant
under all the automorphisms of 7' as a plane graph. It is to the subgraphs T* that (16)
will be applied.

We now see that if T is not empty, then it is a tree. Since T is a tree, the subgraph
T* is a tree just if it is connected. It is well known [5], p. 35, that 7' has an invariant
called its center, consisting either of a single point or two adjacent points. If the center

is a single point ¢, then c is fixed under every reflection of 7. Consequently ¢ is in T*.
If u is any other point in 7*, then every point and line on the unique path joining ¢
and u is in 7* as well, so 7* is indeed a tree. The same reasoning applies if the center
of 7' is a pair of points ¢, ¢’ which are both fixed under some reflection of 7. For if ¢
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and ¢’ are interchanged by a reflection g of T, it is clear that no point or line is left fixed
by o, and so ¢ plays no part in the formation of 7*. Thus the only case in which T* is
not a tree is when no reflection of T leaves any point {ixed, in which case of course 7*
is empty.

We now illustrate (16) for the plane tree 7 of Figure 6(a) and its reflection-
invariant subtree T* of Figure 6(b). Here 7 has 8 points and T* has 4, but p* =3
since equivalence is taken according to the group of 7. Obviously ¢* = 2 and s* = 0 here.

' '

T: o— T%: @ ‘ L ]
® ' [ 3
(a) (d)

Figure 6. A plane tree and its reflexion-invariant subtree

For any achiral plane tree T for which T* is nonempty, let p*(T), q*(T). and s*(T)
be the p*, ¢* and s* in equation (16) for the subtree S = T*. If T* is empty, let
p*¥(T) = ¢*(T) = 0 and s*(T) = 1. Then (16) becomes

(7) 1= p*(T) —¢*(T) + s*(T)
if T* is not empty; our convention assures that (17) also holds in case T* is empty.
Thus s*(T) =1 while p*(T) = ¢*(T) = 0.

Now consider the effect of summing (17) over all achiral plane trees T with n points.
On the left we have -

(18) 21 =a,.
On the right, the first term of (17) gives
(19) 2 p¥(T)=r,.

To see this, for each achiral plane tree 7' and each point u of 7% let T, be the result of
rooting T at u. Since u is in T*, T, is achiral because it is mapped to itself by any re-
flection of T which leaves u fixed. It is easy to see that every achiral rooted tree is obtained
in this way. Moreover T, ~ T, implies that u and v are in the same equivalence class
with respect to I'(T). Restricting attention to trees on n points, this gives a 1 — 1 corre-
spondence which justifies (19).

The sum X ¢*(T) can be similarly evaluated, but the result is most easily expressed
as a generating function. For any tree T, let n(T) be the number of points of 7. Summing
over all achiral plane trees T we have

(20) 2 ™D = q(x),
(21) 2 p*(T)a" " = r(z)
directly from (18) and (19).
To evaluate 2 ¢*(7T)2™™, start with any achiral plane tree 7' and any line (u, v)

in T*, Form the pair of planted plane trees (7, T°) by taking for 7* the union of the
line (u, v) rooted at v with the connected component of 7 — (u, v) which contains u,
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and 7" similarly. Because (u, v) is a line in 7%, it is easy to see that 7% and T are both

" al. All pairs of achiral planted plane trees are obtained in this manner, and the un-
of =d pair (T% T°) corresponds uniquely to the tree T and the unordered pair of points
u’

(w%). Clearly, unordered pairs of achiral planted plane trees are counted by

%(pz(x) + p(z?) with the total number of points as the enumeration parameter. Since

two extra points are added in the formation of (7%, T?) from T, we see that

1 (p*@) P(ﬂvz))

So* T . 27

(22) (M0 =5 (B0 + 25
Similarly it is not hard to establish that if s*(T) = 1 for an achiral plane tree T,

then T has two central points (u and v) and (7*)’ = T*. Conversely any unordered pair
~ of reflection-dual planted plane trees corresponds uniquely to an achiral plane tree with
a symmetry line. The planted plane trees which are self-dual under reflection are by

definition just the achiral ones, so we find

(23) Zs*(T)a"D = -;— [ﬂfT) + P_Sﬁ—)] :

| Combining (20) and (21) with (22) and (23), and applying these to (17), we obtain
the following equation after a bit of primitive manipulation,
2 2

z? x

which counts achiral plane trees in terms of r(z), p(z), and f(z). On replacing r(z) in
( y its expression in (15), we obtain '

(26) a(e) = |-+ 22 1 f(;cj)]°

Finally, by (1) and (3) and just a little algebraic manipulation, we derive the
remarkable and surprising result,

(26) a(z) = p(x),

whose coefficients can be obtained explicitly from (4).

5. Partially achiral trees

Recall that a tree is partially achiral if it has a plane embedding which is an achiral
plane tree. As in the case of achiral plane trees, we count planted and rooted ones first,
and then use the dissimilarity characteristic equation (16) to find the unrooted ones.
The ordinary generating function 7'(x) for rooted trees is well known from Polya [91;
also [5], p. 187:

(27) T(z) —zexp 3 T(@")m.
m=1

We denote by 7 (), s(x), «(z) respectively, as in Section 1, the ordinary generating
h{' ‘ons for partially achiral trees which are planted, rooted, and unrooted. The results

ournal fiir Mathematik, Band 278/279 42
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are summarised in the next three equations;

(26) n(z) — (1+ ”) T(2?),
(29) olz) = L ’( n(z) + o (nﬁ(x)-n(xﬂ))
(30) #(@) = 0(0) — 5oz (2H(2) + 7(@Y) + T(a.

We now proceed to prove them. For (28), we need to consider the structure of a
planted partially achiral tree, rooted at point u adjacent to point v. When u is removed,
consider the remaining b branches at v. Either b is even and the & branches can be d1v1ded
into two identical rooted trees, or else b is odd, so that one branch cannot be paired off
and must itself be partially achiral.

The pair of identical rooted trees give the factor T (z®) while the elther -or conmde- ,
ration accounts for the other factor in (28).

For (29), consider the structure of a partially achiral rooted tree in terms of the b
branches at the root, each regarded as planted at the root. If & is odd these branches
must form a pair of identical rooted trees, along with a single branch which must be
partially achiral. If b is even, we may find either a pair of identical rooted trees or there
may be two additional branches which cannot be paired off, and each of these must be
partially achiral. As before, the factor 7 (z*) counts pairs of identical rooted trees. In the
other factor of equation (29), there are three terms. The term 7 (z) accounts for the single
unpaired branch in case b is odd; the z accounts for the root point in case b is odd and

all branches occur in pairs; and % (#*(x) — = (a*)) accounts for the unordered pairs of

disctinct partially achiral branches in the remaining case.

The proof of (30) is a bit more involved. Consider now a random partially achiral
plane tree R (for random). Let the achiral plane trees with underlying tree R be R,,..., R,
and let R* = Rf U - - Rf, where R} consists as in Section 4 of the pomts and hnes
left fixed by a reflection of R,. As seen in Section 4, each R¥ is either empty or else is
_a tree containing the center of B and so R* also must be empty or else a tree. Ev1dent1y
R* is invariant under all the automorphisms of R, that is under I'(R). Let p* and ¢*
be the number of dissimilar points and lines of R* under I'(R), and let s* be 1 or 0 ac-
cording to whether or not R has a symmetry line. Then if R* is not empty the dissi-
milarity characteristic equation (16) holds.

If R* is empty let T be some plane embedding of R which is achiral. Since T*
must be empty, the (unique) reflection of 7' leaves no point fixed, so that the center
of T must be a pair of points which are I'(R)-similar. Thus p* = ¢* = 0 and s* = 1
in this case, so (16) holds for every partially achiral tree. To obtain a relation for «(z),
we sum (16) over all partially achiral trees, weighted with the factor 2™, with n(R) the
number of points of R. As soon as we have justified the equations

(31) 3 2B — ()
(32) 2 PR = o(a)
(3 2 ¢ RF = o (22(0) + n(@Y) -

(34) 2 s*(R)z™® = T (zY),
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we will have proved that (30) holds. Clearly (31), (32) and (33) follow by reasoning similar
* that for (20), (21) and (22). The trees with a symmetry line are enumerated by 7' (z?),
L ce such a tree is obtained in exactly one way by taking two copies of a rooted tree and

ing the two root points. Such trees are always partially achiral, which justifies (34).

Solving equation (28) for =(x), we get an explicit expression for this generating
function,

T (z?)

(35) T (.'Z?) = m .

6. Achiral trees

Recall that a tree is achiral if every plane embedding is achiral. As usual we first
count planted ones, then rooted, and finally unrooted. The generating functions are
denoted by P(x), R(z), and A (x) respectively, as in Section 1. We will show that P(x)
satisfies

(36) o P(a:)=x2(1+ é::p(x")/x").

To see this, let S be any planted tree with root point u adjacent to point ». Consider
the branches of § — u at v, planted at v. In order for § to be achiral, it is necessary and
¢ “ficient, for all of these branches to be isomorphic and themselves achiral, and for each
;blave just one plane embedding if there be more than one branch. The reason is that
embedding S amounts to embedding these branches in some order, that is, the branches
are ordered arbitrarily and then each is embedded in the plane arbitrarily. The effect
of a reflection is to reverse the order of the branches and to reflect each one. Hence if
there are two branches with distinct plane embeddings, then we can easily find an em-
bedding of § which is not an achiral plane tree.

By induction on the size of achiral planted trees, it follows that each has just one
plane embedding ; the converse is obvious. Thus the conditions just amount to the branches
being achiral and isomorphic. Sets of n isomorphic achiral planted trees are counted
by P(z"). In (36) we divide by z” to account for the identification of the root points,
and multiply in the end by z® to restore the original root point and its neighbor. Of course
n runs from 1 to co, and the term 1 is added for the 2-point planted tree.

The equation which we found to express R(z) in terms of P(z) is

@) R@ =22+ 4 —a (L))
Pla) — P(z?) . P2 P2(z?) — P(a)
_( 2z T )_( 223 )

Let R™(z) count these achiral rooted trees with exactly n branches at the root, so that

(38) R(z) = ,_3::3(@ (2).

< i
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The behavior of R™(z) is irregular for n < 5:

(39) RO(z) = z,

(40) RM(z) = P(x),

(41) RO(g) = L;;m@ ,

(42) RO (z) = L (x)x f (z°) ’

(43) RW(z) = P(x)xl;(x“) n 102’(932)2;3 P(z) ,

(44) R™(z) = P P(z?) + Pg"-l)p(x)_ P(a") ’

x

the latter valid for n = 5.

Now (37) is obtained from (38)—(44) with three applications of (36) to simplify
the infinite sums. Of these, equatlons (38)—(40) are obvious. We give briefly the con-
siderations which lead to the remammg four relations (41)—(44).

A plane embedding of a rooted tree amounts to a cyclic ordering of its branches
at the root followed by plane embeddings of each of these branches. Any reflection which

leaves the root fixed simply reverses the cyclic order on the branches and reflects each
branch.

Now every achiral rooted tree must satisfy:
(1) Every branch is achiral. -
(ii) There are at most two isomorphism classes of branches.

(iti) If there are two isomorphism classes of branches, one class consists of no
more than two branches.

For if one branch is chiral, then a chiral émbedding of the rooted tree is obtained
by choosing the same chiral embedding for all branches isomorphic to this one.

Second, if there are more than two isomorphism classes of branches, then a chiral
embedding of the rooted tree is obtained by assigning the branches in the same isomorphism
class consecutive places in the cyclic order around the root.

Finally, if there are two isomorphism classes of branches with at least three members
each, let all but one member of one of these classes be assigned consecutive places in the
cyclic order around the root, and the last member displaced from this group by one
position. Any such embedding is chiral.

With the help of (i), (ii) and (iii) we are ready to justify equations (41)—(44).
Equation (41) for R®(z) considers rooted trees with just two branches, which are of
course interchangeable achiral planted trees. It is quite well known that unordered pairs
are counted as in (41), while the z in the denominator corrects dimensionally for the root
point. There is a similar factor in the denominator of (42)—(44) for the same reason..

For (42), an achiral rooted tree with three branches must have two alike, whence
P (2%, whilst the third gives P(z). The first term of (43) similarly handles 4-branched
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rooted trees with at least 3 like branches, whereas the second term counts two pairs

- lifferent ones.
L In general, an achiral rooted tree with n branches either has all branches of one
d, or has one sort of branch represented exactly twice or once. The latter possibilities
are counted by the first two terms on the right of (44). But each of these terms also counts
trees for which all the branches are alike, hence the inclusion-exclusion type of correction
in the third term.

Now that rooted achiral trees have been enumerated in (37), we are ready to handle
the unrooted ones, by verifying:

L (P@)— Pa).

(45) A(@) = R@@) —

This again utilizes the dissimilarity characteristic approach.
If § is achiral and S§,,..., S, are the plane embeddings of S, let

S — §¥ ~ ..~ SE

Thus S™) contains those points and lines fixed by some reflection of every embedding
of S in the plane. Let the number of S-dissimilar points and lines in S be p™) and ¢™.
Also let s*) = 0 or 4, the latter just if S contains a symmetry line.

Since an intersection of connected graphs is connected, we know that S™ is a
tree if it is not empty. When we sum the terms of (16) over all achiral trees S, weighted
by the number n(S) of points, we find analogously as before that

y

L (46) %‘ " = A(z),
@) 2P (8)a% = R(a),
| 1 .
,(.48) —;? g™ (8)2™® = 2_x2’(P (@) + P(z?),
(49) s ()2 = -Iif:fi.

On combining (46)—(49) as directed by (16), we obtain the desired equation (45)
for achiral trees. , : A

7. Data

We present in Table 1 the number of trees (for n = 1 to 12 points) of all the types
studied in this paper. [t is essential to keep in mind the notation for all 15 kinds of trees
listed at the end of Section 1. The table has three column-categories giving planted,
rooted, and unrooted trees. For each of these categories, the five kinds of trees enumerated
are (in order) plane, achiral plane, ordinary, partially achiral, and achiral. The three
kinds of trees (from among these five) dealing with chirality were counted using equations
developed in preceding sections. Plane trees were counted in [7], where the equations
for the generating functions are derived, but the numbers supplied only through n = 7.
L‘inary trees go back to Cayley [3], Polya [9], and Otter [8].
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/ Table/1. Three numbers Q‘?ﬂ—w\ 2‘Cﬁ P‘% L
/ |

17{;4nted , / Rooted ﬁﬂ / / [ Unropted
n In P, In Tn hn{ Gy lri Cp 4,
1 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1
2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
3 1 1 1 1 1 2 2 2 2 2 1 1 1 1 1
4 2 2 2 2 2 4 4 4 4 4 2 2 2 2 2
5 5 3 4 3 3 10 8 9 8 8 3 3 3 3 3
6 14 6 9 6 5 26 16 20 16 15 6 6 6 6 6
7 42 10 20 10 6 80 32 48 31 26 14 10 11 9 9
8 132 20 48 19 10 246 64 115 62 45 34 20 23 19 16
9 429 35 115 33 11 810 128 286 120 71 95 85 47 30 23
10 1430 70 286 62 16 2704 256 719 236 110 280 70 106 35
11 4862 126 719, 110 19 9252 512 1842 454 168 854 126 235 99 51

12 16796 252 18427 204 26, |32066 1024 476 90 247, | 2694 2B 208 72
' j \7 x/ v /
J = J j \[/ j | f ©
8. Unsolved problems U'(OS
Recall that f, gives the number of planted plane trees and that Py T, @nd a, are
numbers of achiral plane trees which are planted, rooted and unrooted. We derived

explicit formulas for f,, p, and r, in (2), (4) and (8) and showed in (26) that a(z) = p().
These results imply the followmg relations.

(50) Tpp1 = 27‘”,
(51) pZn = 2p2n—1 = nfn+11
(52) a, =pm

which establish various 1 —1, 2-<1, and n—1 correspondences. The only one to be
explained so far by a natural structural correspondence is

(53) DPon = 2a,,_,.

This can easily be verified by proving that every achiral plane tree on an odd number
of points can be made into an achiral planted plane tree by the addition of a root point
in just two ways. The same is true of any achiral plane tree with no symmetry line.
However if T has the symmetry line (z, v), then there is just one way of obtaining an
achiral planted plane tree from T if 7% is achiral, and none at all if 7" is chiral. These
facts allow (25) to be derived directly without recourse either to the dissimilarity charac-
teristic or to the evaluation of r(z).

1. What other explicit correspondences can be found relating to (50), (51) and (52) ?

2. Asymptotic formulas for those numbers for which we already have explicit
formulas are superfluous. Polya [9] and Otter [8] determined asymptotic formulas for
rooted trees and ordinary trees. Their methods and results are applicable to finding
asymptotic expressions for ,, g, and «,, so there is really no problem here, so far. The
asymptotic enumeration for plane trees was left open in [7] and has not yet been done.

Thus the new problem which we now propose is to provide asymptotic formulas
for achiral trees.

3. Not only have achiral plane trees been defined, but also achiral plane graphs.
What is the number of achiral plane graphs with a given number of vertices and edges?
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In particular, the number of achiral plane unicyclic graphs can be easily derived from
_the results in this paper since it involves combinations of achiral rooted plane trees.

4. How many trees with n points have a unique plane embedding? In general,
7 many have just m plane embeddings, m = 2, 3, . . . ? One may also ask for the number
ol plane embeddings of a given abstract tree.

5. As noted in the books [5] and [6], labeled enumeration is usually much more
tractable than the unlabeled case. However, we have counted achiral trees of various

kinds which are unlabeled. What are the corresponding formulas for these achiral trees
when labeled ?
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