login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A003241
Number of achiral rooted trees.
(Formerly M1101)
2
1, 1, 2, 4, 8, 15, 26, 45, 71, 110, 168, 247, 351, 503, 700, 944, 1294, 1719, 2267, 2961, 3839, 4891, 6297, 7891, 9912, 12347, 15381, 18784, 23203, 28138, 34233, 41275, 49824, 59306, 71309, 84268, 100127, 118045, 139472, 162659
OFFSET
1,3
COMMENTS
There may be an error in eq (37) in the Harary-Robinson paper. - R. J. Mathar, Sep 28 2011
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Jean-François Alcover, Table of n, a(n) for n = 1..80
F. Harary and R. W. Robinson, The number of achiral trees, J. Reine Angew. Math., 278 (1975), 322-335.
F. Harary and R. W. Robinson, The number of achiral trees, J. Reine Angew. Math., 278 (1975), 322-335. (Annotated scanned copy)
MAPLE
L := BFILETOLIST("b003238.txt") ;
Pofxn := proc(n)
global L;
add( op(i, L)*x^(i+1), i=1..120) ;
subs(x=x^n, %) ;
end proc:
P := Pofxn(1) ;
Rn := proc(n)
global L;
(Pofxn(n-2)*Pofxn(2)+Pofxn(n-1)*Pofxn(1)-Pofxn(n))/x^(n-1) ;
end proc:
Px2 := Pofxn(2) ;
Px3 := Pofxn(3) ;
Px4 := Pofxn(4) ;
# eq (37) seems not to work
# R := 2*x+P^2/x^2+(1-x)*P/x*(Px2/x^2-1)-(P^2-Px2)/2/x -Px3/x^2-(Px2^2-Px4)/2/x^3 ;
#use eqs (39)-(44) instead
R := x+P+(P^2+Px2)/2/x+P*Px2/x^2+P*Px3/x^3+(Px2^2-Px4)/2/x^3 :
# heuristics, adding up to R^(40) suffices for first 80 terms
for n from 5 to 40 do
R := R+Rn(n) :
end do:
taylor(R, x=0, 80) ;
gfun[seriestolist](%) ; # R. J. Mathar, Sep 28 2011
MATHEMATICA
L = Cases[Import["https://oeis.org/A003238/b003238.txt", "Table"], {_, _}][[All, 2]];
Pofxn[n_] := Sum[x^(i+1) L[[i]], {i, 1, 120}] /. x -> x^n;
P = Pofxn[1];
Rn[n_] := (1/x^(n-1))(Pofxn[2] Pofxn[n-2] + Pofxn[1] Pofxn[n-1] - Pofxn[n]);
Px2 = Pofxn[2]; Px3 = Pofxn[3]; Px4 = Pofxn[4];
R = (P^2 + Px2)/(2x) + (P Px2)/x^2 + (P Px3)/x^3 + P + (Px2^2 - Px4)/(2x^3) + x;
For[n = 5, n <= 40, n++, R += Rn[n]];
CoefficientList[R + O[x]^41, x] // Rest (* Jean-François Alcover, Apr 06 2020, from Maple *)
CROSSREFS
Sequence in context: A187154 A179001 A222147 * A279320 A182844 A191630
KEYWORD
nonn
EXTENSIONS
Extended by R. J. Mathar, Sep 28 2011
STATUS
approved