OFFSET
0,6
COMMENTS
Partial sums of A004696.
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..280
Mircea Merca, Inequalities and Identities Involving Sums of Integer Functions J. Integer Sequences, Vol. 14 (2011), Article 11.9.1.
FORMULA
a(n) = round(Fibonacci(n+2)/3 - 3*n/8 - 11/24).
a(n) = round(Fibonacci(n+2)/3 - 3*n/8 - 1/3).
a(n) = floor(Fibonacci(n+2)/3 - 3*n/8 - 1/6).
a(n) = ceiling(Fibonacci(n+2)/3 - 3*n/8 - 3/4).
a(n) = a(n-8) + Fibonacci(n-1) + Fibonacci(n-3) - 3, n > 8.
a(n) = 2*a(n-1) - a(n-3) + a(n-8) - 2*a(n-9) + a(n-11), n > 10.
G.f.: -x^4*(1 + x^4 + x^3) / ( (1+x)*(x^2+1)*(x^2+x-1)*(x^4+1)*(x-1)^2 ).
EXAMPLE
a(9) = 0 + 0 + 0 + 0 + 1 + 1 + 2 + 4 + 7 + 11 = 26.
MAPLE
A179001 := proc(n) add( floor(combinat[fibonacci](i)/3), i=0..n) ; end proc:
MATHEMATICA
Accumulate[Floor[Fibonacci[Range[0, 40]]/3]] (* Harvey P. Dale, Jun 13 2022 *)
PROG
(Magma) [Floor(Fibonacci(n+2)/3-3*n/8-1/6): n in [0..40]]; // Vincenzo Librandi, Apr 28 2011
CROSSREFS
KEYWORD
nonn
AUTHOR
Mircea Merca, Jan 03 2011
STATUS
approved