login
A279320
Expansion of chi(-x^4) * psi(x^6) / phi(-x) in powers of x where phi(), psi(), chi() are Ramanujan theta functions.
2
1, 2, 4, 8, 15, 26, 45, 74, 119, 188, 291, 442, 664, 982, 1435, 2076, 2972, 4214, 5929, 8272, 11457, 15762, 21543, 29264, 39532, 53110, 70988, 94430, 125033, 164826, 216388, 282940, 368552, 478326, 618621, 797376, 1024485, 1312184, 1675657, 2133664, 2709307
OFFSET
0,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of f(-x^2, -x^10) * f(-x^8) / f(-x)^2 in powers of x where f(, ) is Ramanujan's general theta function.
Expansion of q^(-11/12) * eta(q^2) * eta(q^8) * eta(q^12)^2 / (eta(q)^2 * eta(q^4) * eta(q^6)) in powers of q.
Euler transform of period 24 sequence [ 2, 1, 2, 2, 2, 2, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 2, 2, 2, 2, 1, 2, 0, ...].
a(n) ~ exp(sqrt(13*n/3)*Pi/2) * 13^(1/4) / (16*sqrt(2)*3^(3/4)*n^(3/4)). - Vaclav Kotesovec, Dec 10 2016
EXAMPLE
G.f. = 1 + 2*x + 4*x^2 + 8*x^3 + 15*x^4 + 26*x^5 + 45*x^6 + 74*x^7 + ...
G.f. = q^11 + 2*q^23 + 4*q^35 + 8*q^47 + 15*q^59 + 26*q^71 + 45*q^83 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ x^(-3/4)/2 QPochhammer[ -x^4, x^4] EllipticTheta[ 2, 0, x^3] / EllipticTheta[ 4, 0, x], {x, 0, n}];
a[ n_] := SeriesCoefficient[ 2^(-3/2)/x EllipticTheta[ 2, Pi/4, x] EllipticTheta[ 2, 0, x^3] / QPochhammer[ x]^2, {x, 0, n}];
nmax = 50; CoefficientList[Series[Product[(1+x^k) * (1+x^(4*k)) * (1+x^(6*k)) * (1-x^(12*k)) / (1-x^k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Dec 10 2016 *)
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A) * eta(x^8 + A) * eta(x^12 + A)^2 / (eta(x + A)^2 * eta(x^4 + A) * eta(x^6 + A)), n))};
CROSSREFS
Cf. A131945.
Sequence in context: A179001 A222147 A003241 * A182844 A191630 A125513
KEYWORD
nonn
AUTHOR
Michael Somos, Dec 09 2016
STATUS
approved