OFFSET
0,2
LINKS
Colin Barker, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,1).
FORMULA
a(n) = abs(2n + 1 - 14*round((2n + 1)/14)).
a(n) = (25 + 2*( ((n+1) mod 7) + ((n+2) mod 7) + ((n+3) mod 7) - ((n+4) mod 7) - ((n+5) mod 7) - ((n+6) mod 7) ))/7. - Wesley Ivan Hurt, Dec 23 2016
From Colin Barker, Mar 21 2019: (Start)
G.f.: (1 + 2*x + x^2 + x^3)*(1 + x + 2*x^2 + x^3) / ((1 - x)*(1 + x + x^2 + x^3 + x^4 + x^5 + x^6)).
a(n) = a(n-7) for n>6.
(End)
MAPLE
A279321:=n->[1, 3, 5, 7, 5, 3, 1, 1][(n mod 7)+1]: seq(A279321(n), n=0..100); # Wesley Ivan Hurt, Dec 23 2016
MATHEMATICA
PadRight[{}, 120, {1, 3, 5, 7, 5, 3, 1}] (* Vincenzo Librandi, Dec 10 2016 *)
With[{k = 14}, Table[Abs[2 n + 1 - k Round[(2 n + 1)/k]], {n, 0, 120}]] (* Michael De Vlieger, Dec 10 2016 *)
PROG
(Magma) &cat[[1, 3, 5, 7, 5, 3, 1]: n in [0..10]];
(PARI) Vec((1 + 2*x + x^2 + x^3)*(1 + x + 2*x^2 + x^3) / ((1 - x)*(1 + x + x^2 + x^3 + x^4 + x^5 + x^6)) + O(x^85)) \\ Colin Barker, Mar 21 2019
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Wesley Ivan Hurt, Dec 09 2016
STATUS
approved