login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A279321
Period 7: repeat [1, 3, 5, 7, 5, 3, 1].
2
1, 3, 5, 7, 5, 3, 1, 1, 3, 5, 7, 5, 3, 1, 1, 3, 5, 7, 5, 3, 1, 1, 3, 5, 7, 5, 3, 1, 1, 3, 5, 7, 5, 3, 1, 1, 3, 5, 7, 5, 3, 1, 1, 3, 5, 7, 5, 3, 1, 1, 3, 5, 7, 5, 3, 1, 1, 3, 5, 7, 5, 3, 1, 1, 3, 5, 7, 5, 3, 1, 1, 3, 5, 7, 5, 3, 1, 1, 3, 5, 7, 5, 3, 1, 1, 3
OFFSET
0,2
FORMULA
a(n) = abs(2n + 1 - 14*round((2n + 1)/14)).
a(n) = (25 + 2*( ((n+1) mod 7) + ((n+2) mod 7) + ((n+3) mod 7) - ((n+4) mod 7) - ((n+5) mod 7) - ((n+6) mod 7) ))/7. - Wesley Ivan Hurt, Dec 23 2016
From Colin Barker, Mar 21 2019: (Start)
G.f.: (1 + 2*x + x^2 + x^3)*(1 + x + 2*x^2 + x^3) / ((1 - x)*(1 + x + x^2 + x^3 + x^4 + x^5 + x^6)).
a(n) = a(n-7) for n>6.
(End)
MAPLE
A279321:=n->[1, 3, 5, 7, 5, 3, 1, 1][(n mod 7)+1]: seq(A279321(n), n=0..100); # Wesley Ivan Hurt, Dec 23 2016
MATHEMATICA
PadRight[{}, 120, {1, 3, 5, 7, 5, 3, 1}] (* Vincenzo Librandi, Dec 10 2016 *)
With[{k = 14}, Table[Abs[2 n + 1 - k Round[(2 n + 1)/k]], {n, 0, 120}]] (* Michael De Vlieger, Dec 10 2016 *)
PROG
(Magma) &cat[[1, 3, 5, 7, 5, 3, 1]: n in [0..10]];
(PARI) Vec((1 + 2*x + x^2 + x^3)*(1 + x + 2*x^2 + x^3) / ((1 - x)*(1 + x + x^2 + x^3 + x^4 + x^5 + x^6)) + O(x^85)) \\ Colin Barker, Mar 21 2019
CROSSREFS
Bisection of A279313.
Sequence in context: A356026 A356379 A324712 * A254863 A085965 A238205
KEYWORD
nonn,easy
AUTHOR
Wesley Ivan Hurt, Dec 09 2016
STATUS
approved