login
A279324
Number of nX3 0..2 arrays with no element equal to a strict majority of its king-move neighbors, with the exception of exactly one element, and with new values introduced in order 0 sequentially upwards.
1
2, 16, 664, 16092, 384180, 8854880, 198179722, 4349449420, 94030021118, 2008611971608, 42492470600304, 891738728583352, 18587655574241802, 385215213233213336, 7943580006341736164, 163094668708824004640
OFFSET
1,1
COMMENTS
Column 3 of A279327.
LINKS
FORMULA
Empirical: a(n) = 42*a(n-1) -493*a(n-2) +954*a(n-3) -858*a(n-4) +64710*a(n-5) -158273*a(n-6) -161852*a(n-7) -2287658*a(n-8) +6484208*a(n-9) -177947*a(n-10) +11804176*a(n-11) -49983075*a(n-12) +91094328*a(n-13) -173959667*a(n-14) +162252702*a(n-15) -380972477*a(n-16) +1361216068*a(n-17) -1961010260*a(n-18) +1550329916*a(n-19) -2391450876*a(n-20) +6220276480*a(n-21) -11713534100*a(n-22) +12134895968*a(n-23) -3049399072*a(n-24) +3376854336*a(n-25) -27370283344*a(n-26) +31787315136*a(n-27) +20476192704*a(n-28) -69504679168*a(n-29) +47220424704*a(n-30) +7849958400*a(n-31) -27469923328*a(n-32) +14445785088*a(n-33) -2627997696*a(n-34) for n>35
EXAMPLE
Some solutions for n=4
..0..0..1. .0..1..1. .0..1..2. .0..1..1. .0..1..2. .0..1..1. .0..1..2
..2..2..2. .2..1..0. .2..0..0. .0..1..2. .0..0..0. .1..0..0. .1..1..1
..1..0..0. .0..1..0. .0..0..2. .2..0..2. .1..2..1. .1..1..0. .2..0..0
..2..1..0. .2..0..2. .1..0..2. .0..2..1. .2..0..2. .0..2..1. .1..1..1
CROSSREFS
Cf. A279327.
Sequence in context: A012464 A277036 A289202 * A128294 A278087 A015188
KEYWORD
nonn
AUTHOR
R. H. Hardin, Dec 09 2016
STATUS
approved