login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A277036 G.f.: Sum_{n>=0} exp(-n * 2^n * x) * [ Sum_{k>=1} k^n * 2^(n*k) * x^k / k! ]^n. 3
1, 2, 16, 640, 102656, 63897600, 154597064704, 1463095704682496, 54479037904873062400, 8016231806154061580861440, 4675328432258454936484990418944, 10830326782491721013522399339743281152, 99782643106894570834269165391541758337220608, 3659836060539105945122413831815090863199825623515136, 534751190090057629985959636400471838795213939324687126364160 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
More generally, for fixed integer q, G(x,q) = Sum_{n>=0} exp(-n * q^n * x) * [ Sum_{k>=1} k^n * q^(n*k) * x^k / k! ]^n is an integer series such that G(x,q) = Sum_{n>=0} q^(n^2) * [ Sum_{k=1..n} S2(n,k) * q^(n*k-n) * x^k ]^n.
LINKS
FORMULA
G.f.: Sum_{n>=0} [ Sum_{k=1..n} S2(n,k) * 2^(n*k) * x^k ]^n, where S2(n,k) = A008277(n,k) are the Stirling numbers of the second kind.
EXAMPLE
G.f.: A(x) = 1 + 2*x + 16*x^2 + 640*x^3 + 102656*x^4 + 63897600*x^5 + 154597064704*x^6 + 1463095704682496*x^7 +...
such that
A(x) = Sum_{n>=0} exp(-n*2^n*x) * (2^n*x + 2^n*2^(2*n)*x^2/2! + 3^n*2^(3*n)*x^3/3! +...+ k^n*2^(k*n)*x^k/k! +...)^n.
Explicitly,
A(x) = 1 + exp(-2*x) * (2*x + 2*2^2*x^2/2! + 3*2^3*x^3/3! + 4*2^4*x^4/4! +...) +
exp(-2*2^2*x) * (2^2*x + 4*2^4*x^2/2! + 9*2^6*x^3/3! + 16*2^8*x^4/4! +...)^2 +
exp(-3*2^3*x) * (2^3*x + 8*2^6*x^2/2! + 27*2^9*x^3/3! + 64*2^12*x^4/4! +...)^3 +
exp(-4*2^4*x) * (2^4*x + 16*2^8*x^2/2! + 81*2^12*x^3/3! + 256*2^16*x^4/4! +...)^4 +
exp(-5*2^5*x) * (2^5*x + 32*2^10*x^2/2! + 243*2^15*x^3/3! + 1024*2^20*x^4/4! +...)^5 +...
The g.f. can be written using the Stirling2 numbers like so:
A(x) = 1 + 2*x + (2^2*x + 2^4*x^2)^2 + (2^3*x + 3*2^6*x^2 + 2^9*x^3)^3 + (2^4*x + 7*2^8*x^2 + 6*2^12*x^3 + 2^16*x^4)^4 + (2^5*x + 15*2^10*x^2 + 25*2^15*x^3 + 10*2^20*x^4 + 2^25*x^5)^5 + (2^6*x + 31*2^12*x^2 + 90*2^18*x^3 + 65*2^24*x^4 + 15*2^30*x^5 + 2^36*x^6)^6 + (2^7*x + 63*2^14*x^2 + 301*2^21*x^3 + 350*2^28*x^4 + 140*2^35*x^5 + 21*2^42*x^6 + 2^49*x^7)^7 +...+ [ Sum_{k=1..n} S2(n,k) * 2^(n*k) * x^k ]^n +...
PROG
(PARI) {a(n) = my(A=1); A = sum(m=0, n+1, exp(-m*2^m*x +x*O(x^n)) * sum(k=1, n+1, 2^(m*k)*k^m*x^k/k! +x*O(x^n))^m ); polcoeff(A, n)}
for(n=0, 15, print1(a(n), ", "))
(PARI) {a(n) = my(A = sum(m=0, n, sum(k=1, m, stirling(m, k, 2)*2^(m*k)*x^k +x*O(x^n) )^m )); polcoeff(A, n)}
for(n=0, 15, print1(a(n), ", "))
CROSSREFS
Sequence in context: A060279 A012757 A012464 * A289202 A279324 A128294
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Oct 08 2016
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 6 22:36 EST 2023. Contains 367616 sequences. (Running on oeis4.)