login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A369674
a(n) = Product_{k=0..n} (3^k + 3^(n-k)).
12
2, 16, 600, 112896, 108928800, 544431476736, 14105702277360000, 1900051576637594075136, 1328360485647389567734080000, 4830166933124609654538067824869376, 91168969237139220357818392868757600000000, 8950497893393998236587417126220897399198550327296
OFFSET
0,1
FORMULA
a(n) = Product_{k=0..n} (3^k + 3^(n-k)).
a(n) = 3^(n*(n+1)) * Product_{k=0..n} (1/3^k + 1/3^(n-k)).
a(n) = 3^(n*(n+1)/2) * Product_{k=0..n} (1 + 1/3^(n-2*k)).
From Vaclav Kotesovec, Feb 07 2024: (Start)
a(n) ~ c * 3^(3*n^2/4 + n), where
c = 2.538295806020848... = QPochhammer(-1, 1/9)^2/2 if n is even and
c = 2.539569717896307... = 3^(1/4) * QPochhammer(-3, 1/9)^2 / 16 if n is odd. (End)
EXAMPLE
a(0) = (1 + 1) = 2;
a(1) = (1 + 3)*(3 + 1) = 16;
a(2) = (1 + 3^2)*(3 + 3)*(3^2 + 1) = 600;
a(3) = (1 + 3^3)*(3 + 3^2)*(3^2 + 3)*(3^3 + 1) = 112896;
a(4) = (1 + 3^4)*(3 + 3^3)*(3^2 + 3^2)*(3^3 + 3)*(3^4 + 1) = 108928800;
a(5) = (1 + 3^5)*(3 + 3^4)*(3^2 + 3^3)*(3^3 + 3^2)*(3^4 + 3)*(3^5 + 1) = 544431476736;
...
RELATED SERIES.
Let F(x) be the g.f. of A369557, then
F(1/3) = 2 + 16/3^2 + 600/3^6 + 112896/3^12 + 108928800/3^20 + 544431476736/3^30 + 14105702277360000/3^42 + ... + a(n)/3^(n*(n+1)) + ... = 4.847274134844057155467506697748724715389597193...
PROG
(PARI) {a(n) = prod(k=0, n, 3^k + 3^(n-k))}
for(n=0, 15, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Feb 06 2024
STATUS
approved