login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A369677
a(n) = Product_{k=0..n} (2^k + 5^(n-k)).
5
2, 18, 910, 275562, 509528318, 5782203860202, 403066704971309470, 172986911139059942455818, 457494980583771669025834718462, 7445459859979605380607238308201858858, 746155118699551878624986638597659812003763550, 461066589238234272286243169377378506495126815749310922
OFFSET
0,1
FORMULA
a(n) = Product_{k=0..n} (2^k + 5^(n-k)).
a(n) = 10^(n*(n+1)/2) * Product_{k=0..n} (1/2^k + 1/5^(n-k)).
a(n) = 5^(n*(n+1)/2) * Product_{k=0..n} (1 + 2^n/10^k).
a(n) = 2^(n*(n+1)/2) * Product_{k=0..n} (1 + 5^n/10^k).
a(n) = 2^(-n*(n+1)/2) * Product_{k=0..n} (2^n + 10^k).
a(n) = 5^(-n*(n+1)/2) * Product_{k=0..n} (5^n + 10^k).
a(n) = 2^(n*(n+1)/2)*QPochhammer(-5^n, 1/10, n + 1). - Stefano Spezia, Feb 07 2024
Limit_{n->oo} a(n)^(1/n^2) = 2^(1/(2*(1 + log(5)/log(2)))) * sqrt(5) = 5^(1/(2*(1 + log(2)/log(5)))) * sqrt(2) = 2.481958590195459039209137154563963236753327... - Vaclav Kotesovec, Feb 07 2024
Equivalently, limit_{n->oo} a(n)^(1/n^2) = exp((1/2) * (log(2)^2 + log(2)*log(5) + log(5)^2) / log(10)). - Paul D. Hanna, Feb 08 2024
EXAMPLE
a(0) = (1 + 1) = 2;
a(1) = (1 + 5)*(2 + 1) = 18;
a(2) = (1 + 5^2)*(2 + 5)*(2^2 + 1) = 910;
a(3) = (1 + 5^3)*(2 + 5^2)*(2^2 + 5)*(2^3 + 1) = 275562;
a(4) = (1 + 5^4)*(2 + 5^3)*(2^2 + 5^2)*(2^3 + 5)*(2^4 + 1) = 509528318;
a(5) = (1 + 5^5)*(2 + 5^4)*(2^2 + 5^3)*(2^3 + 5^2)*(2^4 + 5)*(2^5 + 1) = 5782203860202;
...
RELATED SERIES.
Sum_{n>=0} Product_{k=0..n} (1/2^k + 1/5^(n-k)) = 2 + 18/10 + 910/10^3 + 275562/10^6 + 509528318/10^10 + 5782203860202/10^15 + ... + a(n)/10^(n*(n+1)/2) + ... = 5.0427178660718059961260933841217518099...
PROG
(PARI) {a(n) = prod(k=0, n, 2^k + 5^(n-k))}
for(n=0, 15, print1(a(n), ", "))
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Feb 07 2024
STATUS
approved