login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A369673
a(n) = Product_{k=0..n} (2^k + 2^(n-k)).
11
2, 9, 100, 2916, 231200, 50808384, 31258240000, 54112148361216, 264265663201280000, 3645603832850650497024, 142153785549232537600000000, 15673043740102659990892604030976, 4886752115388739132874502963200000000, 4309225323078788454199311474023086952546304, 10747393363422494556085100202291563069440000000000
OFFSET
0,1
COMMENTS
Conjectures:
(C.1) a(n) is a square iff n is not divisible by 4.
(C.2) a(2*n+1) is not divisible by 5 for n >= 0.
(C.3) exponent of highest power of 5 dividing a(4*n) = 2*A127428(n).
(C.4) exponent of highest power of 5 dividing a(4*n+2) = 2*A127428(n+1).
From Vaclav Kotesovec, Feb 07 2024: (Start)
For q > 1, Product_{k=0..n} (q^k + q^(n-k)) ~ c * q^(3*n^2/4 + n), where
c = QPochhammer(-1, 1/q^2)^2/2 if n is even and
c = q^(1/4) * QPochhammer(-q, 1/q^2)^2 / (q + 1)^2 if n is odd.
c_even / c_odd = EllipticTheta[2, 0, 1/q] / EllipticTheta[3, 0, 1/q] = JacobiTheta2(0, 1/q) / JacobiTheta3(0, 1/q). (End)
FORMULA
a(n) = Product_{k=0..n} (2^k + 2^(n-k)).
a(n) = 2^(n*(n+1)) * Product_{k=0..n} (1/2^k + 1/2^(n-k)).
a(n) = 2^(n*(n+1)/2)*QPochhammer(-2^n, 1/4, 1 + n). - Stefano Spezia, Feb 06 2024
From Vaclav Kotesovec, Feb 07 2024: (Start)
a(n) ~ c * 2^(3*n^2/4 + n), where
c = 3.676982087353134... = QPochhammer(-1, 1/4)^2/2 if n is even and
c = 3.676991719144565... = 2^(1/4) * QPochhammer(-2, 1/4)^2 / 9 if n is odd.
c_even / c_odd = EllipticTheta[2, 0, 1/2] / EllipticTheta[3, 0, 1/2] = JacobiTheta2(0, 1/2) / JacobiTheta3(0, 1/2) = 0.9999973805240351337720926619... (End)
EXAMPLE
a(0) = (1 + 1) = 2;
a(1) = (1 + 2)*(2 + 1) = 9;
a(2) = (1 + 2^2)*(2 + 2)*(2^2 + 1) = 100;
a(3) = (1 + 2^3)*(2 + 2^2)*(2^2 + 2)*(2^3 + 1) = 2916;
a(4) = (1 + 2^4)*(2 + 2^3)*(2^2 + 2^2)*(2^3 + 2)*(2^4 + 1) = 231200;
a(5) = (1 + 2^5)*(2 + 2^4)*(2^2 + 2^3)*(2^3 + 2^2)*(2^4 + 2)*(2^5 + 1) = 50808384;
a(6) = (1 + 2^6)*(2 + 2^5)*(2^2 + 2^4)*(2^3 + 2^3)*(2^4 + 2^2)*(2^5 + 2)*(2^6 + 1) = 31258240000;
...
RELATED SERIES.
Let F(x) be the g.f. of A369557, then
F(1/2) = 2 + 9/2^2 + 100/2^6 + 2916/2^12 + 231200/2^20 + 50808384/2^30 + 31258240000/2^42 + 54112148361216/2^56 + ... + a(n)/2^(n*(n+1)) + ... = 6.800139835051923542641455169580774467247971025...
PROG
(PARI) {a(n) = prod(k=0, n, 2^k + 2^(n-k))}
for(n=0, 15, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Feb 06 2024
STATUS
approved