login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A226391
a(n) = Sum_{k=0..n} binomial(k*n, k).
8
1, 2, 9, 103, 2073, 58481, 2101813, 91492906, 4671050401, 273437232283, 18046800575211, 1325445408799007, 107200425419863009, 9466283137384124247, 906151826270369213655, 93459630239922214535911, 10331984296666203358431361, 1218745075041575200343722415
OFFSET
0,2
LINKS
FORMULA
a(n) ~ binomial(n^2, n).
MATHEMATICA
Table[Sum[Binomial[k*n, k], {k, 0, n}], {n, 0, 20}]
PROG
(Maxima) A226391(n):=sum(binomial(k*n, k), k, 0, n); makelist(A226391(n), n, 0, 30); /* Martin Ettl, Jun 06 2013 */
(Magma) [(&+[Binomial(n*j, j): j in [0..n]]): n in [0..30]]; // G. C. Greubel, Aug 31 2022
(SageMath)
@CachedFunction
def A226391(n): return sum(binomial(n*j, j) for j in (0..n))
[A226391(n) for n in (0..30)] # G. C. Greubel, Aug 31 2022
CROSSREFS
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Jun 06 2013
STATUS
approved