The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A086331 Expansion of e.g.f. exp(x)/(1 + LambertW(-x)). 42
 1, 2, 7, 43, 393, 4721, 69853, 1225757, 24866481, 572410513, 14738647221, 419682895325, 13094075689225, 444198818128313, 16278315877572141, 640854237634448101, 26973655480577228769, 1208724395795734172705, 57453178877303382607717, 2887169565412587866031533 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Binomial transform of A000312. - Tilman Neumann, Dec 13 2008 a(n) is the number of partial functions on {1,2,...,n} that are endofunctions. See comments in A000169 and A126285 by Franklin T. Adams-Watters. - Geoffrey Critzer, Dec 19 2011 LINKS Winston de Greef, Table of n, a(n) for n = 0..385 (first 201 terms from Vincenzo Librandi) V. Kotesovec, Interesting asymptotic formulas for binomial sums, Jun 09 2013 FORMULA a(n) = Sum_{k=0..n} binomial(n,k)*k^k. a(n) ~ e^(1/e)*n^n * (1 + 1/(2*e*n)) ~ 1.444667861... * n^n. - Vaclav Kotesovec, Nov 27 2012 G.f.: Sum_{k>=0} (k * x)^k/(1 - x)^(k+1). - Seiichi Manyama, Jul 04 2022 EXAMPLE a(2) = 7 because {}->{}, 1->1, 2->2, and the four functions from {1,2} into {1,2}. Note A000169(2) = 9 because it counts these 7 and 1->2, 2->1. MAPLE a:= n-> add(binomial(n, k)*k^k, k=0..n): seq(a(n), n=0..25); # Alois P. Heinz, Dec 30 2021 MATHEMATICA nn=10; t=Sum[n^(n-1)x^n/n!, {n, 1, nn}]; Range[0, nn]!CoefficientList[Series[Exp[x]/(1-t), {x, 0, nn}], x] (* Geoffrey Critzer, Dec 19 2011 *) PROG (PARI) a(n) = sum(k=0, n, binomial(n, k)*k^k ); \\ Joerg Arndt, May 10 2013 (PARI) my(N=20, x='x+O('x^N)); Vec(sum(k=0, N, (k*x)^k/(1-x)^(k+1))) \\ Seiichi Manyama, Jul 04 2022 (PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(x)*sum(k=0, N, (k*x)^k/k!))) \\ Seiichi Manyama, Jul 04 2022 CROSSREFS Cf. A069856, A204042, A277454, A277456, A323280. Sequence in context: A078676 A265229 A286684 * A121418 A014501 A197910 Adjacent sequences: A086328 A086329 A086330 * A086332 A086333 A086334 KEYWORD nonn AUTHOR Vladeta Jovovic, Sep 01 2003 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 18 03:51 EDT 2024. Contains 375995 sequences. (Running on oeis4.)