login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A323280 a(n) = Sum_{k=0..n} binomial(n,k) * k^(2*k). 7
1, 2, 19, 781, 68553, 10100761, 2236373953, 693667946945, 286962262702657, 152652510206521921, 101513694573289791441, 82511051259976074269425, 80480313356721971865934369, 92773167329045961244649105633, 124768226258051318899374299271601 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
LINKS
FORMULA
a(n) ~ n^(2*n). - Vaclav Kotesovec, May 31 2019
From Seiichi Manyama, Jul 04 2022: (Start)
G.f.: Sum_{k>=0} (k^2 * x)^k/(1 - x)^(k+1).
E.g.f.: exp(x) * Sum_{k>=0} (k^2 * x)^k/k!. (End)
MATHEMATICA
Table[1 + Sum[Binomial[n, k]*k^(2*k), {k, 1, n}], {n, 0, 15}] (* Vaclav Kotesovec, May 31 2019 *)
PROG
(PARI) a(n) = sum(k=0, n, binomial(n, k)*k^(2*k));
(PARI) my(N=20, x='x+O('x^N)); Vec(sum(k=0, N, (k^2*x)^k/(1-x)^(k+1))) \\ Seiichi Manyama, Jul 04 2022
(PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(x)*sum(k=0, N, (k^2*x)^k/k!))) \\ Seiichi Manyama, Jul 04 2022
CROSSREFS
Sequence in context: A013047 A012951 A012980 * A013110 A024228 A015191
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Jan 12 2019
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 16 18:51 EDT 2024. Contains 371750 sequences. (Running on oeis4.)