|
|
A277454
|
|
a(n) = 1 + Sum_{k=1..n} binomial(n,k) * 2^k * k^k.
|
|
5
|
|
|
1, 3, 21, 271, 5065, 122811, 3651997, 128566663, 5227782161, 241072839667, 12430169195941, 708612945554559, 44253858433505497, 3004570398043291819, 220341964157226260525, 17357760973540312138231, 1461813975265547356467745, 131061164660246579394042339
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
LINKS
|
|
|
FORMULA
|
E.g.f.: exp(x)/(1+LambertW(-2*x)).
a(n) ~ exp(exp(-1)/2) * 2^n * n^n.
|
|
MATHEMATICA
|
Table[1+Sum[Binomial[n, k]*2^k*k^k, {k, 1, n}], {n, 0, 20}]
CoefficientList[Series[E^x/(1+LambertW[-2*x]), {x, 0, 20}], x] * Range[0, 20]!
|
|
PROG
|
(PARI) {a(n) = sum(k=0, n, binomial(n, k)*(2*k)^k)} \\ Seiichi Manyama, Jan 12 2019
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|