login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A098278
D(n,0)/2^n, where D(n,x) is triangle A098277.
2
1, 1, 3, 21, 267, 5349, 154923, 6120741, 316271787, 20701782309, 1673934058923, 163850823271461, 19093313058395307, 2611858473935397669, 414452507370456337323, 75508557963926980473381
OFFSET
0,3
COMMENTS
This is related to formula (1.7) in Lazar and Wachs reference.
Apparently all terms (except the initial 1s) have 3-valuation 1. - F. Chapoton, Jul 31 2021
LINKS
Ange Bigeni and Evgeny Feigin, Symmetric Dellac configurations, arXiv:1808.04275 [math.CO], 2018.
Alexander Lazar and Michelle L. Wachs, On the homogenized Linial arrangement: intersection lattice and Genocchi numbers, Séminaire Lotharingien de Combinatoire, 82B.93 (FPSAC 2019).
A. Randrianarivony and J. Zeng, Une famille de polynômes qui interpole plusieurs suites..., Adv. Appl. Math. 17 (1996), 1-26.
FORMULA
G.f.: Sum_{n>=0} a(n)*x^n = 1/(1-1*1*x/(1-1*2*x/(1-2*3*x/(1-2*4*x/...)))).
G.f.: Sum_{n>=0} n!^2 * x^n / Product_{k=1..n} (1 + k*(k+1)/2*x). - Paul D. Hanna, Sep 05 2012
G.f.: 1/G(0) where G(k) = 1 - x*(k+1)*(2*k+1)/(1 - x*(k+1)*(2*k+2)/G(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Jan 14 2013.
a(n+1) = Sum_{k=0..n} A098277(n,k)*(1/2)^k. - Philippe Deléham, Feb 08 2013
EXAMPLE
G.f.: A(x) = 1 + x + 3*x^2 + 21*x^3 + 267*x^4 + 5349*x^5 + ...
where A(x) = 1 + x/(1+x) + 2!^2*x^2/((1+x)*(1+3*x)) + 3!^2*x^3/((1+x)*(1+3*x)*(1+6*x)) + 4!^2*x^4/((1+x)*(1+3*x)*(1+6*x)*(1+10*x)) + ... - Paul D. Hanna, Sep 05 2012
MATHEMATICA
d[0, _] = 1; d[n_, x_] := d[n, x] = (x+1)(x+2)d[n-1, x+2]-x(x+1)d[n-1, x];
a[n_] := d[n, 0]/2^n;
Table[a[n], {n, 0, 15}] (* Jean-François Alcover, Oct 26 2018 *)
PROG
(PARI) {a(n)=polcoeff(sum(m=0, n, m!^2*x^m/prod(k=1, m, 1+k*(k+1)/2*x +x*O(x^n))), n)} \\ Paul D. Hanna, Sep 05 2012
CROSSREFS
Cf. A000366.
Sequence in context: A322224 A221094 A375451 * A269938 A277454 A215127
KEYWORD
nonn
AUTHOR
Ralf Stephan, Sep 07 2004
STATUS
approved