login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A098278 D(n,0)/2^n, where D(n,x) is triangle A098277. 2
1, 1, 3, 21, 267, 5349, 154923, 6120741, 316271787, 20701782309, 1673934058923, 163850823271461, 19093313058395307, 2611858473935397669, 414452507370456337323, 75508557963926980473381 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

This is related to formula (1.7) in Lazar and Wachs reference.

Apparently all terms (except the initial 1s) have 3-valuation 1. - F. Chapoton, Jul 31 2021

LINKS

Table of n, a(n) for n=0..15.

Ange Bigeni and Evgeny Feigin, Symmetric Dellac configurations, arXiv:1808.04275 [math.CO], 2018.

Alexander Lazar and Michelle L. Wachs, On the homogenized Linial arrangement: intersection lattice and Genocchi numbers, Séminaire Lotharingien de Combinatoire, 82B.93 (FPSAC 2019).

A. Randrianarivony and J. Zeng, Une famille de polynômes qui interpole plusieurs suites..., Adv. Appl. Math. 17 (1996), 1-26.

FORMULA

G.f.: Sum_{n>=0} a(n)*x^n = 1/(1-1*1*x/(1-1*2*x/(1-2*3*x/(1-2*4*x/...)))).

G.f.: Sum_{n>=0} n!^2 * x^n / Product_{k=1..n} (1 + k*(k+1)/2*x). - Paul D. Hanna, Sep 05 2012

G.f.: 1/G(0) where G(k) = 1 - x*(k+1)*(2*k+1)/(1 - x*(k+1)*(2*k+2)/G(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Jan 14 2013.

a(n+1) = Sum_{k=0..n} A098277(n,k)*(1/2)^k. - Philippe Deléham, Feb 08 2013

EXAMPLE

G.f.: A(x) = 1 + x + 3*x^2 + 21*x^3 + 267*x^4 + 5349*x^5 + ...

where A(x) = 1 + x/(1+x) + 2!^2*x^2/((1+x)*(1+3*x)) + 3!^2*x^3/((1+x)*(1+3*x)*(1+6*x)) + 4!^2*x^4/((1+x)*(1+3*x)*(1+6*x)*(1+10*x)) + ... - Paul D. Hanna, Sep 05 2012

MATHEMATICA

d[0, _] = 1; d[n_, x_] := d[n, x] = (x+1)(x+2)d[n-1, x+2]-x(x+1)d[n-1, x];

a[n_] := d[n, 0]/2^n;

Table[a[n], {n, 0, 15}] (* Jean-François Alcover, Oct 26 2018 *)

PROG

(PARI) {a(n)=polcoeff(sum(m=0, n, m!^2*x^m/prod(k=1, m, 1+k*(k+1)/2*x +x*O(x^n))), n)} \\ Paul D. Hanna, Sep 05 2012

CROSSREFS

Cf. A000366.

Sequence in context: A012131 A322224 A221094 * A269938 A277454 A215127

Adjacent sequences:  A098275 A098276 A098277 * A098279 A098280 A098281

KEYWORD

nonn

AUTHOR

Ralf Stephan, Sep 07 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 6 10:24 EST 2021. Contains 349563 sequences. (Running on oeis4.)