login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A215127
E.g.f.: Sum_{n>=0} D^(n^2-n) (x + x^2)^(n^2) / (n^2)!, where operator D^n = d^n/dx^n.
1
1, 1, 3, 21, 271, 5073, 149931, 5629933, 287996871, 18574155561, 1472489126563, 143431714523781, 16629096827674623, 2271941249486405761, 362871752515734614811, 66782754543872231839773, 14054632818067589280068791, 3359850327080126215443462873
OFFSET
0,3
COMMENTS
Compare to the identity:
exp(x) = Sum_{n>=0} D^(n^2-n) x^(n^2)/(n^2)!, where operator D^n = d^n/dx^n.
EXAMPLE
E.g.f.: A(x) = 1 + x + 3*x^2/2! + 21*x^3/3! + 271*x^4/4! + 5073*x^5/5! +...
such that, by definition:
A(x) = 1 + (x+x^2) + d^2/dx^2 (x+x^2)^4/4! + d^6/dx^6 (x+x^2)^9/9! + d^12/dx^12 (x+x^2)^16/16! + d^20/dx^20 (x+x^2)^25/25! +...
Compare to the trivial identity:
exp(x) = 1 + x + d^2/dx^2 x^4/4! + d^6/dx^6 x^9/9! + d^12/dx^12 x^16/16! + d^20/dx^20 x^25/25! +...
PROG
(PARI) {Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}
{a(n)=local(A=x); A=1+sum(m=1, n, Dx(m^2-m, (x+x^2+x*O(x^n))^(m^2)/(m^2)!)); n!*polcoeff(A, n)}
for(n=0, 25, print1(a(n), ", "))
CROSSREFS
Cf. A215126.
Sequence in context: A098278 A269938 A277454 * A227820 A336809 A066206
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Aug 04 2012
STATUS
approved