login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A215124
Number of solid standard Young tableaux of shape [[(n-2)*2,2],[n-2]].
2
0, 0, 0, 8, 174, 2084, 21025, 194064, 1694224, 14232672, 116228871, 928763000, 7294771770, 56497996620, 432520209420, 3278863236544, 24649138276800, 183964353480832, 1364323157872947, 10061883449658936, 73839952091271730, 539488089621673500
OFFSET
0,4
COMMENTS
a(n) is odd if and only if n = 2*k and k >= 3 and k in { A118113 }.
LINKS
S. B. Ekhad, D. Zeilberger, Computational and Theoretical Challenges on Counting Solid Standard Young Tableaux, arXiv:1202.6229v1 [math.CO], 2012
Wikipedia, Young tableau
FORMULA
For n > 3, a(n) = 3*(n-1) * (3*n-8) * (-576 + 937*n - 486*n^2 + 81*n^3) * (3*n-10)! / (2 * (n-4)! * (2*n-3)!). - Vaclav Kotesovec, Sep 02 2014
MAPLE
a:= proc(n) option remember; `if`(n<4, [0, 0, 0, 8][n+1],
3*(n-1)*(3*n-8)*(3*n-10)*(937*n-486*n^2+81*n^3-576)*a(n-1)
/(2*(n-2)^2*(2*n-3)*(2152*n-729*n^2+81*n^3-2080)))
end:
seq(a(n), n=0..30);
MATHEMATICA
Flatten[{0, 0, 0, 8, Table[3*(n-1) * (3*n-8) * (-576 + 937*n - 486*n^2 + 81*n^3) * (3*n-10)! / (2 * (n-4)! * (2*n-3)!), {n, 4, 20}]}] (* Vaclav Kotesovec, Sep 02 2014 *)
CROSSREFS
Column k=2 of A215122.
Sequence in context: A303285 A061492 A263461 * A138783 A067637 A357503
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Aug 03 2012
STATUS
approved