login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A138783
a(n) = n*(n - 1)*(27*n^2 - 67*n + 74)*n!/24.
1
0, 8, 174, 2856, 41400, 579600, 8184960, 119105280, 1804965120, 28631232000, 476407008000, 8319778790400, 152431242163200, 2927359840204800, 58858423303680000, 1237373793976320000, 27161714759122944000
OFFSET
1,2
COMMENTS
a(n)=Sum [f(L)^2 Sum h(u)^2*h(v)^2], where L is a partition of n, f(L) is the number of standard Young tableaux of shape L, h(w) is the hook length of the box w in L (i.e. in the Ferrers diagram of L), the inner summation is over all unordered pairs of distinct boxes u and v in L and the outer summation is over all partitions of n. Example: a(3)=174 because for the partitions L=(3), (2,1), (1,1,1) of n=3 the values of f(L) are 1, 2, 1, respectively, the hook length multi-sets are {3,2,1}, {3,1,1},{3,2,1}, respectively, Sum h(u)^2*h(v)^2 = 49, 19, 49, respectively and now a(n) 1^2*49+2^2*19+1^2*49=174.
FORMULA
D-finite with recurrence -(n-2)*(27*n^2-121*n+168)*a(n) +n^2*(27*n^2-67*n+74)*a(n-1)=0. - R. J. Mathar, Jul 22 2022
E.g.f.: x^2*(4 + 9*x + 14*x^2)/(1 - x)^5. - Stefano Spezia, Jan 03 2023
MAPLE
seq((1/24)*n*(n-1)*(27*n^2-67*n+74)*factorial(n), n=1..17);
MATHEMATICA
Table[(n(n-1)(27n^2-67n+74)n!)/24, {n, 20}] (* Harvey P. Dale, Jan 14 2015 *)
CoefficientList[Series[x^2*(4 + 9*x + 14*x^2)/(1 - x)^5, {x, 0, 17}], x]Table[n!, {n, 0, 17}] (* Stefano Spezia, Jan 03 2023 *)
CROSSREFS
Sequence in context: A061492 A263461 A215124 * A067637 A357503 A024109
KEYWORD
nonn,easy
AUTHOR
Emeric Deutsch, May 15 2008
STATUS
approved