login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A215122
Number T(n,k) of solid standard Young tableaux of shape [[(n-k)*k,k],[n-k]]; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
3
1, 0, 0, 0, 2, 0, 0, 8, 8, 0, 0, 30, 174, 30, 0, 0, 112, 2084, 2084, 112, 0, 0, 420, 21025, 52808, 21025, 420, 0, 0, 1584, 194064, 994788, 994788, 194064, 1584, 0, 0, 6006, 1694224, 16074586, 31497284, 16074586, 1694224, 6006, 0
OFFSET
0,5
LINKS
S. B. Ekhad, D. Zeilberger, Computational and Theoretical Challenges on Counting Solid Standard Young Tableaux, arXiv:1202.6229v1 [math.CO], 2012
Wikipedia, Young tableau
EXAMPLE
Triangle T(n,k) begins:
1;
0, 0;
0, 2, 0;
0, 8, 8, 0;
0, 30, 174, 30, 0;
0, 112, 2084, 2084, 112, 0;
0, 420, 21025, 52808, 21025, 420, 0;
0, 1584, 194064, 994788, 994788, 194064, 1584, 0;
MAPLE
b:= proc(x, y, z) option remember; `if`(z<y, b(x, z, y),
`if`({x, y, z}={0}, 1, `if`(x>y and x>z, b(x-1, y, z), 0)+
`if`(y>0, b(x, y-1, z), 0)+ `if`(z>0, b(x, y, z-1), 0)))
end:
T:= (n, k)-> `if`(k=0 xor k=n, 0, b((n-k)*k, k, n-k)):
seq(seq(T(n, k), k=0..n), n=0..10);
MATHEMATICA
b[x_, y_, z_] := b[x, y, z] = If[z<y, b[x, z, y], If[Union[{x, y, z}] == {0}, 1, If[x>y && x>z, b[x-1, y, z], 0] + If[y>0, b[x, y-1, z], 0] + If[z>0, b[x, y, z-1], 0]]]; T[n_, k_] := If[k == 0 || k == n, 0, b[(n-k)*k, k, n-k]]; T[0, 0] = 1; Table[Table[T[n, k], {k, 0, n}], {n, 0, 10}] // Flatten (* Jean-François Alcover, Jan 19 2015, after Alois P. Heinz *)
CROSSREFS
Columns k=0-2 give: A000007, A162551(n-1), A215124.
Central elements of rows give A215123.
Sequence in context: A058347 A058547 A230910 * A332473 A235789 A236925
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Aug 03 2012
STATUS
approved