OFFSET
0,5
COMMENTS
I.e., T(n,k) = Sum_{m in M(n,k)} checks(m), where M(n,k) contains all n by k matrices and checks(M) is the number of checks to find all nonzero rows and columns of m.
Conjecture: T(n,k) = T(k,n).
max(n,k) (2-2^(-min(n,k))) <= T(n,k)/2^(n*k) if n > 0 and k > 0.
T(n,k)/2^(n*k) <= 2*max(n,k)+2 -( min(n,k)+2*max(n,k))*2^(-min(n,k)) -(2*min(n,k)+3*max(n,k))*2^(-max(n,k)). The lower bound is a lower bound for any algorithm to carry out the same task.
LINKS
M. R. C. van Dongen, A Theoretical Analysis of Domain-Heuristics for Arc-Consistency Algorithms, Technical Report: TR0004, CS Dept, UCC, College Road, Cork, Ireland.
FORMULA
T(0, k) = 0, T(n, 0) = 0, T(n, k) = (2^(k+1) - 2)2^((n-1) k) + 2^((n-1)(k-1))((k-2)2^(k)+2) + (n-1)(2^(k) - 1)2^((n-2)k + 1) + T(n-1, k) + 2^(n-1)(2^(k)-1) T(n-1, k-1), if n > 0 and k > 0
EXAMPLE
Triangle begins:
{0};
{0,0};
{0,2,0};
{0,8,8,0};
{0,24,54,24,0};
...
MATHEMATICA
T[n_, 0] := 0 T[0, n_] := 0 T[n_, k_] := ( (2^(k+1) - 2)2^((n-1) k) + 2^((n-1)(k-1))((k-2)2^(k)+2) + (n-1)(2^(k) - 1)2^((n-2)k + 1) + T[n-1, k] + 2^(n-1)(2^(k)-1) T[n-1, k-1]) For[c=0, c<=10, c++, For[n=0, n<=c, n++, Print[T[n, c-n]]]]
CROSSREFS
KEYWORD
AUTHOR
M.R.C. van Dongen (dongen(AT)cs.ucc.ie), Dec 15 2000
EXTENSIONS
a(39) corrected by Sean A. Irvine, Aug 04 2022
STATUS
approved