The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A058347 Array T(n,k), n,k nonnegative: the total number of checks required by a "double-support" algorithm to find out which rows and columns of each of the n by k zero-one matrices are nonzero. 1
 0, 0, 0, 0, 2, 0, 0, 8, 8, 0, 0, 24, 54, 24, 0, 0, 64, 302, 302, 64, 0, 0, 160, 1566, 3094, 1566, 160, 0, 0, 384, 7742, 30502, 30502, 7742, 384, 0, 0, 896, 36990, 294470, 565110, 294470, 36990, 896, 0, 0, 2048, 172286, 2784390, 10482454, 10482454, 2784390 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 COMMENTS I.e., T(n,k) = Sum_{m in M(n,k)} checks(m), where M(n,k) contains all n by k matrices and checks(M) is the number of checks to find all nonzero rows and columns of m. Conjecture: T(n,k) = T(k,n). max(n,k) (2-2^(-min(n,k))) <= T(n,k)/2^(n*k) if n > 0 and k > 0. T(n,k)/2^(n*k) <= 2*max(n,k)+2 -( min(n,k)+2*max(n,k))*2^(-min(n,k)) -(2*min(n,k)+3*max(n,k))*2^(-max(n,k)). The lower bound is a lower bound for any algorithm to carry out the same task. LINKS Table of n, a(n) for n=0..51. M. R. C. van Dongen, A Theoretical Analysis of Domain-Heuristics for Arc-Consistency Algorithms, Technical Report: TR0004, CS Dept, UCC, College Road, Cork, Ireland. FORMULA T(0, k) = 0, T(n, 0) = 0, T(n, k) = (2^(k+1) - 2)2^((n-1) k) + 2^((n-1)(k-1))((k-2)2^(k)+2) + (n-1)(2^(k) - 1)2^((n-2)k + 1) + T(n-1, k) + 2^(n-1)(2^(k)-1) T(n-1, k-1), if n > 0 and k > 0 EXAMPLE Triangle begins: {0}; {0,0}; {0,2,0}; {0,8,8,0}; {0,24,54,24,0}; ... MATHEMATICA T[n_, 0] := 0 T[0, n_] := 0 T[n_, k_] := ( (2^(k+1) - 2)2^((n-1) k) + 2^((n-1)(k-1))((k-2)2^(k)+2) + (n-1)(2^(k) - 1)2^((n-2)k + 1) + T[n-1, k] + 2^(n-1)(2^(k)-1) T[n-1, k-1]) For[c=0, c<=10, c++, For[n=0, n<=c, n++, Print[T[n, c-n]]]] CROSSREFS Cf. A058547. Sequence in context: A028698 A013667 A091933 * A058547 A230910 A215122 Adjacent sequences: A058344 A058345 A058346 * A058348 A058349 A058350 KEYWORD nonn,tabl,easy AUTHOR M.R.C. van Dongen (dongen(AT)cs.ucc.ie), Dec 15 2000 EXTENSIONS a(39) corrected by Sean A. Irvine, Aug 04 2022 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 3 19:10 EST 2023. Contains 367540 sequences. (Running on oeis4.)