login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A058347 Array T(n,k), n,k nonnegative: the total number of checks required by a "double-support" algorithm to find out which rows and columns of each of the n by k zero-one matrices are nonzero. 1
0, 0, 0, 0, 2, 0, 0, 8, 8, 0, 0, 24, 54, 24, 0, 0, 64, 302, 302, 64, 0, 0, 160, 1566, 3094, 1566, 160, 0, 0, 384, 7742, 30502, 30502, 7742, 384, 0, 0, 896, 36990, 294470, 565110, 294470, 36990, 896, 0, 0, 2048, 172286, 2784390, 10482454, 10482454, 2784390 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
0,5
COMMENTS
I.e., T(n,k) = Sum_{m in M(n,k)} checks(m), where M(n,k) contains all n by k matrices and checks(M) is the number of checks to find all nonzero rows and columns of m.
Conjecture: T(n,k) = T(k,n).
max(n,k) (2-2^(-min(n,k))) <= T(n,k)/2^(n*k) if n > 0 and k > 0.
T(n,k)/2^(n*k) <= 2*max(n,k)+2 -( min(n,k)+2*max(n,k))*2^(-min(n,k)) -(2*min(n,k)+3*max(n,k))*2^(-max(n,k)). The lower bound is a lower bound for any algorithm to carry out the same task.
LINKS
M. R. C. van Dongen, A Theoretical Analysis of Domain-Heuristics for Arc-Consistency Algorithms, Technical Report: TR0004, CS Dept, UCC, College Road, Cork, Ireland.
FORMULA
T(0, k) = 0, T(n, 0) = 0, T(n, k) = (2^(k+1) - 2)2^((n-1) k) + 2^((n-1)(k-1))((k-2)2^(k)+2) + (n-1)(2^(k) - 1)2^((n-2)k + 1) + T(n-1, k) + 2^(n-1)(2^(k)-1) T(n-1, k-1), if n > 0 and k > 0
EXAMPLE
Triangle begins:
{0};
{0,0};
{0,2,0};
{0,8,8,0};
{0,24,54,24,0};
...
MATHEMATICA
T[n_, 0] := 0 T[0, n_] := 0 T[n_, k_] := ( (2^(k+1) - 2)2^((n-1) k) + 2^((n-1)(k-1))((k-2)2^(k)+2) + (n-1)(2^(k) - 1)2^((n-2)k + 1) + T[n-1, k] + 2^(n-1)(2^(k)-1) T[n-1, k-1]) For[c=0, c<=10, c++, For[n=0, n<=c, n++, Print[T[n, c-n]]]]
CROSSREFS
Cf. A058547.
Sequence in context: A028698 A013667 A091933 * A058547 A230910 A215122
KEYWORD
nonn,tabl,easy
AUTHOR
M.R.C. van Dongen (dongen(AT)cs.ucc.ie), Dec 15 2000
EXTENSIONS
a(39) corrected by Sean A. Irvine, Aug 04 2022
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 3 19:10 EST 2023. Contains 367540 sequences. (Running on oeis4.)