login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Array T(n,k), n,k nonnegative: the total number of checks required by a "double-support" algorithm to find out which rows and columns of each of the n by k zero-one matrices are nonzero.
1

%I #12 Aug 04 2022 05:23:07

%S 0,0,0,0,2,0,0,8,8,0,0,24,54,24,0,0,64,302,302,64,0,0,160,1566,3094,

%T 1566,160,0,0,384,7742,30502,30502,7742,384,0,0,896,36990,294470,

%U 565110,294470,36990,896,0,0,2048,172286,2784390,10482454,10482454,2784390

%N Array T(n,k), n,k nonnegative: the total number of checks required by a "double-support" algorithm to find out which rows and columns of each of the n by k zero-one matrices are nonzero.

%C I.e., T(n,k) = Sum_{m in M(n,k)} checks(m), where M(n,k) contains all n by k matrices and checks(M) is the number of checks to find all nonzero rows and columns of m.

%C Conjecture: T(n,k) = T(k,n).

%C max(n,k) (2-2^(-min(n,k))) <= T(n,k)/2^(n*k) if n > 0 and k > 0.

%C T(n,k)/2^(n*k) <= 2*max(n,k)+2 -( min(n,k)+2*max(n,k))*2^(-min(n,k)) -(2*min(n,k)+3*max(n,k))*2^(-max(n,k)). The lower bound is a lower bound for any algorithm to carry out the same task.

%H M. R. C. van Dongen, <a href="http://csweb.ucc.ie/~dongen/papers/UCC/00/TR0004.pdf">A Theoretical Analysis of Domain-Heuristics for Arc-Consistency Algorithms</a>, Technical Report: TR0004, CS Dept, UCC, College Road, Cork, Ireland.

%F T(0, k) = 0, T(n, 0) = 0, T(n, k) = (2^(k+1) - 2)2^((n-1) k) + 2^((n-1)(k-1))((k-2)2^(k)+2) + (n-1)(2^(k) - 1)2^((n-2)k + 1) + T(n-1, k) + 2^(n-1)(2^(k)-1) T(n-1, k-1), if n > 0 and k > 0

%e Triangle begins:

%e {0};

%e {0,0};

%e {0,2,0};

%e {0,8,8,0};

%e {0,24,54,24,0};

%e ...

%t T[n_, 0] := 0 T[0, n_] := 0 T[n_, k_] := ( (2^(k+1) - 2)2^((n-1) k) + 2^((n-1)(k-1))((k-2)2^(k)+2) + (n-1)(2^(k) - 1)2^((n-2)k + 1) + T[n-1, k] + 2^(n-1)(2^(k)-1) T[n-1, k-1]) For[c=0, c<=10, c++, For[n=0, n<=c, n++, Print[T[n, c-n]]]]

%Y Cf. A058547.

%K nonn,tabl,easy

%O 0,5

%A M.R.C. van Dongen (dongen(AT)cs.ucc.ie), Dec 15 2000

%E a(39) corrected by _Sean A. Irvine_, Aug 04 2022