OFFSET
0,2
COMMENTS
Total length of all Dyck paths of length 2n.
a(n) equals the diagonal element A(n,n) of matrix A whose element A(i,j) = A(i-1,j) + A(i,j-1). - Carmine Suriano, May 10 2010
a(n) is also the number of solid (3 dimensions) standard Young tableaux of shape [[n,n],[1]]. - Thotsaporn Thanatipanonda, Feb 27 2012
With offset = 1, a(n) is the total number of nodes over all binary trees with one child internal and one child external. - Geoffrey Critzer, Feb 23 2013
Central terms of the triangle in A051601. - Reinhard Zumkeller, Aug 05 2013
a(n) is the number of North-East paths from (0,0) to (n+1,n+1) that bounce off the diagonal y = x an odd number of times. Details can be found in Section 4.2 in Pan and Remmel's link. - Ran Pan, Feb 01 2016
a(n) is the number of North-East paths from (0,0) to (n+1,n+1) that cross the diagonal y = x an odd number of times. Details can be found in Section 4.3 in Pan and Remmel's link. - Ran Pan, Feb 01 2016
REFERENCES
R. Sedgewick and P. Flajolet, Analysis of Algorithms, Addison Wesley 1996, page 141.
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..200
Guo-Niu Han, Enumeration of Standard Puzzles, 2011. [Cached copy]
Guo-Niu Han, Enumeration of Standard Puzzles, arXiv:2006.14070 [math.CO], 2020.
Valentin Ovsienko, Shadow sequences of integers, from Fibonacci to Markov and back, arXiv:2111.02553 [math.CO], 2021.
Ran Pan and Jeffrey B. Remmel, Paired patterns in lattice paths, arXiv:1601.07988 [math.CO], 2016
Ping Sun, Proof of two conjectures of Petkovsek and Wilf on Gessel walks, Discrete Math, 312(24) (2012), 3649-3655. MR2979494. See Th. 1.1, case 2. - N. J. A. Sloane, Nov 07 2012
FORMULA
a(n) = 2*A001791(n). - R. J. Mathar, Jul 15 2009
E.g.f.: exp(2*x)*2*(BesselI(1,2*x)). - Peter Luschny, Aug 26 2012
O.g.f.: ((1 - 2*x)/(1 - 4*x)^(1/2) - 1)/x - Geoffrey Critzer, Feb 23 2013
E.g.f.: 2*Q(0) - 2, where Q(k) = 1 - 2*x/(k + 1 - (k + 1)*(2*k + 3)/(2*k + 3 - (k + 2)/Q(k+1))); (continued fraction). - Sergei N. Gladkovskii, Apr 28 2013
MATHEMATICA
nn=25; Drop[CoefficientList[Series[(1-2x)/(1-4x)^(1/2), {x, 0, nn}], x], 1] (* Geoffrey Critzer, Feb 23 2013 *)
Table[2Binomial[2n, n-1], {n, 0, 30}] (* Harvey P. Dale, Oct 26 2016 *)
PROG
(Magma) [2*n*Catalan(n): n in [0..30]]; // Vincenzo Librandi, Jul 19 2011
(Haskell)
a162551 n = a051601 (2 * n) n -- Reinhard Zumkeller, Aug 05 2013
(PARI) a(n) = 2*binomial(2*n, n-1) \\ Charles R Greathouse IV, Oct 23 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
Franklin T. Adams-Watters, Jul 05 2009
STATUS
approved