login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A162551 a(n) = 2 * C(2*n,n-1). 12
0, 2, 8, 30, 112, 420, 1584, 6006, 22880, 87516, 335920, 1293292, 4992288, 19315400, 74884320, 290845350, 1131445440, 4407922860, 17194993200, 67156001220, 262564816800, 1027583214840, 4025232800160, 15780742227900, 61915399071552 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Total length of all Dyck paths of length 2n.

a(n) equals the diagonal element A(n,n) of matrix A whose element A(i,j)=A(i-1,j)+A(i,j-1). [Carmine Suriano, May 10 2010]

a(n) is also the number of solid (3 dimensions) standard Young tableaux of shape [[n,n],[1]]. - Thotsaporn Thanatipanonda, Feb 27 2012

With offset = 1, a(n) is the total number of nodes over all binary trees with one child internal and one child external. - Geoffrey Critzer, Feb 23 2013

Central terms of the triangle in A051601. - Reinhard Zumkeller, Aug 05 2013

a(n) is the number of North-East paths from (0,0) to (n+1,n+1) that bounce off the diagonal y = x an odd number of times. Details can be found in Section 4.2 in Pan and Remmel's link. - Ran Pan, Feb 01 2016

a(n) is the number of North-East paths from (0,0) to (n+1,n+1) that cross the diagonal y = x an odd number of times. Details can be found in Section 4.3 in Pan and Remmel's link. - Ran Pan, Feb 01 2016

REFERENCES

R. Sedgewick and P. Flajolet, Analysis of Algorithms, Addison Wesley 1996, page 141.

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..200

Guo-Niu Han, Enumeration of Standard Puzzles

Guo-Niu Han, Enumeration of Standard Puzzles [Cached copy]

Ran Pan, Jeffrey B. Remmel, Paired patterns in lattice paths, arXiv:1601.07988 [math.CO], 2016

Ping Sun, Proof of two conjectures of Petkovsek and Wilf on Gessel walks, Discrete Math, 312 (2012), no. 24, 3649--3655. MR2979494. See Th. 1.1, case 2. - N. J. A. Sloane, Nov 07 2012

FORMULA

a(n) = 2*A001791(n). [R. J. Mathar, Jul 15 2009]

E.g.f.: exp(2*x)*2*(BesselI(1,2*x)). - Peter Luschny, Aug 26 2012

O.g.f.: ((1-2x)/(1-4x)^(1/2)-1)/x - Geoffrey Critzer, Feb 23 2013

E.g.f.: 2*Q(0) - 2, where Q(k)= 1 - 2*x/(k+1 - (k+1)*(2*k+3)/(2*k+3 - (k+2)/Q(k+1))); (continued fraction). - Sergei N. Gladkovskii, Apr 28 2013

a(n) = binomial(2*n+2,n+1) - A028329(n). - Ran Pan, Feb 01 2016

MATHEMATICA

nn=25; Drop[CoefficientList[Series[(1-2x)/(1-4x)^(1/2), {x, 0, nn}], x], 1]  (* Geoffrey Critzer, Feb 23 2013 *)

Table[2Binomial[2n, n-1], {n, 0, 30}] (* Harvey P. Dale, Oct 26 2016 *)

PROG

(MAGMA) [2*n*Catalan(n): n in [0..30]]; // Vincenzo Librandi, Jul 19 2011

(Haskell)

a162551 n = a051601 (2 * n) n  -- Reinhard Zumkeller, Aug 05 2013

CROSSREFS

Cf. A162549, A028329.

Sequence in context: A052530 A274798 A281949 * A073663 A266319 A155116

Adjacent sequences:  A162548 A162549 A162550 * A162552 A162553 A162554

KEYWORD

nonn

AUTHOR

Franklin T. Adams-Watters, Jul 05 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified September 26 06:54 EDT 2017. Contains 292502 sequences.